Méthode OIV-MA-AS315-27

Méthode Type IV

Analysis of volatile compounds in wines by gas chromatography

(Resolution OIV-OENO 553/2016, Revised by OIV-OENO 553/201427)

1 – Object

This method is applicable to the analysis of volatile compounds in wines containing less than 20 g/L sugar.

For wines with a sugar content higher than 20 g/L and for mistelles, prior distillation (identical to that practised to obtain the ABV) is necessary; however distillation sometimes removes a significant part of the compounds.

2 – Scope of application

The present method may be used for the quantification of the following compounds (non-exhaustive list):

- ethanal.
- ethyl acetate,
- methanol,
- butan-2-ol,
- propan-1-ol,
- 2-methylpropan-1-ol,
- isoamyl acetate,
- butan-1-ol,
- 2-methylbutan-1-ol,
- 3-methylbutan-1-ol,
- pentan-1-ol,
- acetoin,
- ethyl lactate,
- hexan-1-ol,
- 3-ethoxypropanol,
- ethyl octanoate,
- furfuraldehyde,
- (2R,3R)-butane-2,3-diol,
- (2R,3S)-butane-2,3-diol,

OIV-MA-AS315-27: 201627

1

- propane-1,2-diol,
- butyrolactone,
- diethyl succinate,
- hexanoic acid (semi-quantitative),
- 2-phenylethanol,
- diethyl malate,
- octanoic acid (semi-quantitative),
- decanoic acid (semi-quantitative).

Note: diacetyl and acetic acid cannot be quantified by this method yet they appear in the chromatograms.

3 – Principle

Volatile compounds are quantified by gas chromatography after direct injection of the sample, added with an internal standard, into a capillary column coated with a bonded polar phase and detection using flame ionisation. Ethanol is Internal Standard.

4 – Reagents and products

The quantities and method of preparation are given by way of example and may be adapted as necessary to the types of wine.

- 4.1 Demineralised water (e.g. ISO 3696 type II or resistivity \geq 18 M Ω .cm);
- 4.2 ethanol [CAS no. 64-17-5], purity \geq 96%;
- 4.3 high-purity hydrogen for GC (e.g. $H_2O \le 4$ ppm; $O_2 \le 2$ ppm; $C_nH_m \le 0.5$ ppm; $N_2 \le 4$ ppm);
- 4.4 high-purity helium for GC ($H_2O \le 3$ ppm; $O_2 \le 2$ ppm; $C_nH_m \le 1$ ppm; $N_2 \le 5$ ppm);
- 4.5 high-purity compressed air for GC;
- 4.6 ethanal [CAS no. 75-07-0], purity $\ge 99\%$;
- 4.7 ethyl acetate [CAS no. 141-78-6], purity \geq 99.5%;
- 4.8 methanol [CAS no. 67-56-1], purity \geq 99.8%;
- 4.9 diacetyl [CAS no. 431-03-08], purity \geq 99%;
- 4.10 butan-2-ol [CAS no. 15892-23-6], purity \geq 99.5%;
- 4.11 propan-1-ol [CAS no. 71-23-8], purity \geq 99.5%;
- 4.12 2-methylpropan-1-ol [CAS no. 78-83-1], purity \geq 99.5%;
- 4.13 isoamyl acetate [CAS no. 123-92-2], purity $\geq 97\%$;
- 4.14 butan-1-ol [CAS no. 71-36-3], purity \geq 99.5%;
- 4.15 4 methylpentan 2-ol (internal standard) [CAS no. 108-11-2], purity ≥ 99%;
- 4.16 2-methylbutan-1-ol [CAS no. 137-32-6], purity $\ge 99\%$;
- 4.17 3-methylbutan-1-ol [CAS no. 125-51-3], purity $\ge 99.5\%$;

- 4.18 pentan-1-ol [CAS no. 71-41-0], purity $\geq 99\%$;
- 4.19 acetoin [CAS no. 513-86-0], purity \geq 96%;
- 4.20 ethyl lactate [CAS no. 687-47-8], purity $\ge 98\%$;
- 4.21 hexan-1-ol [CAS no. 111-27-3], purity $\geq 99.0\%$;
- 4.22 3-ethoxypropanol [CAS no. 111-35-3], purity \geq 97%;
- 4.23 ethyl octanoate [CAS no. 106-32-1], purity \geq 99%;
- 4.24 furfuraldehyde [CAS no. 98-01-1], purity \geq 99.0%;
- 4.25 acetic acid [CAS no. 64-19-7], purity $\ge 99\%$;
- 4.26 (2R,3R)- and (2R,3S)-butane-2,3-diol [CAS no. 513-85-9], purity $\ge 98\%$;
- 4.27 propane-1,2-diol [CAS no. 57-556], purity \geq 99.5%;
- 4.28 butyrolactone [CAS no. 96-48-0], purity \geq 99%;
- 4.29 diethyl succinate [CAS no. 123-25-1], purity \geq 99%;
- 4.30 hexanoic acid [CAS no. 142-62-1], purity ≥ 99.5%;
- 4.31 2-phenylethanol [CAS no. 60-12-8], purity \geq 99%;
- 4.32 diethyl malate [CAS no. 7554-12-3], purity $\ge 97\%$;
- 4.33 octanoic acid [CAS no. 124-07-2], purity ≥ 99.5%;
- 4.34 decanoic acid [CAS no. 334-48-5], purity $\ge 99.5\%$.

Note: diacetyl and acetic acid cannot be quantified by this method yet they appear in the chromatograms.

<u>Preparation of reagent solutions</u> (the quantities are given by way of example and may be adapted as necessary to the types of matrix to be analysed)

- 4.35 10% Aqueous-alcoholic mixture to be made up with ethanol (4.2) and water (4.1).
- 4.36 Internal standard solution

Transfer 1 mL 4 methylpentan 2 ol (4.15) into a 100 mL flask (5.2). Fill up to the calibration mark with ethanol (4.2). Divide into flasks on which the date of preparation is noted. Keep refrigerated.

- 4.37 Internal or external reference wine (a CRM (Certified Reference Material) wine or a wine used as a reference material from a proficiency-testing programme between laboratories for example).
- 4.38 Stock calibration solution

The compounds are individually weighed at \pm 1 mg (nominal weights given in the table below) using a precision balance (5.4). In order to avoid losses through evaporation, quickly add a small amount of ethanol (4.2). Mix and pour into a 1-L flask (5.3). Rinse with ethanol. Add 2.5 mL 4-methylpentan-2-ol (4.15). Make up to 1 L with ethanol (4.2) and mix. Divide into flasks and store in the freezer. Record the exact weights.

OIV-MA-AS315-27: 201627

Compound	Nomina l weight (mg)	Final concentrati on in the working calibration solution 4.39 (mg/L)	Compound	Nomin al weight (mg)	Final concentrati on in the working calibration solution 4.39 (mg/L)
Ethanal (4.6)	500	50	Hexan-1-ol (4.21)	300	30
Ethyl acetate (4.7)	1500	150	3-Ethoxypropanol (4.22)	160	16
Methanol (4.8)	650	65	Furfuraldehyde (4.24)	50	5
Diacetyl (4.9)	50	5	Ethyl octanoate (4.23)	120	12
Butan-2-ol (4.10)	160	16	Acetic acid (5.25)	5000	500
Propan-1-ol (4.11)	350	35	Butane-2,3-diol (4.26)	4000	400
2-Methylpropan-1-ol (4.12)	240	24	Propane-1,2-diol (4.27)	1000	100
Isoamyl acetate (4.13)	250	25	Butyrolactone (4.28)	50	5
Butan-1-ol (4.14)	160	16	Diethyl succinate (4.29)	500	50
2-Methylbutan-1-ol (4.16)	160	16	Hexanoic acid (4.30)	250	25
3-Methylbutan-1-ol (4.17)	1000	100	2-Phenylethanol (4.31)	500	50
Pentan-1-ol (4.18)	160	16	Diethyl malate (4.32)	1000	100
Acetoin (4.19)	250	25	Octanoic acid (4.33)	500	50
Ethyl lactate (4.20)	1500	150	Decanoic acid (4.34)	750	75

4.39 - Working calibration solution

Just before use, dilute the stock calibration solution (4.38) ten times.

5 – Apparatus

- 5.1 20-mL volumetric flasks (class A):
- 5.2 100-mL volumetric flasks (class A);
- 5.3 1-L volumetric flasks (class A);
- 5.4 precision balance with an accuracy of ± 1 mg;
- 5.5 gas chromatograph equipped with:
 - "split-splitless" injector,
 - autosampler (optional),
 - detector: flame ionisation (FID);

5.6 - fused-silica capillary column:

- Carbowax 20 M type with a bonded polar phase,
- 50 m in length,
- internal diameter of 0.32 mm,
- film thickness of 0.45 μm.

Note: other systems may be used on condition that they are capable of satisfactorily separating the different compounds.

6 – Preparation of the samples

Conduct a preliminary degassing of sparkling wine samples (for example, by first taking a sample using an automatic pipette and collecting it in a tube).

Distil the wines containing more than 20 g/L of sugar and the mistelles prior to preparation.

Introduce the sample into a 20-mL flask (5.1). Add 0.5 mL internal standard solution (4.36) and fill up to the calibration mark with wine.

7 - Procedure

Analyse using the gas chromatograph (5.5) equipped with a capillary column (5.6).

Analytical conditions (given by way of example):

Carrier gas (4.4): P_{helium} = 90 kPa

Note: another carrier gas such as hydrogen may be used, but nitrogen is best avoided.

OIV-MA-AS315-27: 201627

5

Septum flow rate: 2.5 mL/min Split flow rate: 40 mL/min Split mode of injection Volume injected: 1 µL

Temperature of the injector: 200 °C Detector: FID (flame ionisation)

Detector temperature at 250 °C

Flame: $P_{hydrogen (4.3)} = 50 \text{ kPa}$ and $P_{air (4.5)} = 130 \text{ kPa}$

Temperature programming:

. temp. 1 = 32 °C at 2.5 °C/min, up to 80 °C - t_1 = 0 min . temp. 2 = 80 °C at 4 °C/min, up to 170 °C - t_2 = 20 min . temp. 3 = 170 °C at 10 °C/min, up to 220°C - t_3 = 20 min

Calibration

Inject the working calibration solution (4.39) before each analysis series. Calculation of response factors:

 $RF_i = (area_i \times Cc_{IS}) / (Cc_i \times area_{IS})$

 Cc_i = concentration of the constituent of the calibration solution

 $Area_i = area$ of the constituent of the calibration solution

 $Cc_{IS} = concentration$ of the internal standard (ethanol) in the calibration solution $Area_{IS} = area$ of the internal standard (ethanol) in the calibration solution

It is also possible to use a calibration curve.

By way of example, chromatograms of a standard solution and a wine sample are given in the Annexes.

8 - Calculations

In the case of use of a response factor, calculation of the concentrations is as follows:

 $Cc_i = (area_i \times Cc_{iS})/(RF_i \times area_{IS}).$

9 - Precision

See Annex C.

10 - Quality assurance and control

Traceable to the international references through mass, volume and temperature.

6

Synthetic mixtures or samples coming, for instance, from proficiency ring test are used as internal quality control. A control chart may be used.

11 – Results
Express concentrations in mg/L AA to the number of decimal places indicated below.

Analytical	No. of decimal	Analytical	No. of decimal
parameters	places	parameters	places
Ethanal	0	Ethyl lactate	0
Ethyl acetate	0	Hexan-1-ol	1
Methanol	0	3-Ethoxypropanol	0
Butan-2-ol	1	Ethyl octanoate	0
Propan-1-ol	0	Furfuraldehyde	1
2-Methylpropan-1-ol	0	(2R,3R)-Butane-2,3-diol	0
Isoamyl acetate	1	(Meso)-butane-2,3-diol	0
Butan-1-ol	1	Propane-1,2-diol	0
2-Methylbutan-1-ol	0	Butyrolactone	0
3-Methylbutan-1-ol	0	Diethyl succinate	0
Pentan-1-ol	1	2-Phenylethanol	0
Acetoin	0	Diethyl malate	0

Annex A Bibliography

BERTRAND A., GUEDES DE PINHO P. and ANOCIBAR BELOQUI A. (1994). Les constituants majoritaires du vin, FV 971, OIV, 15 pages.

ANNEX B Example chromatograms

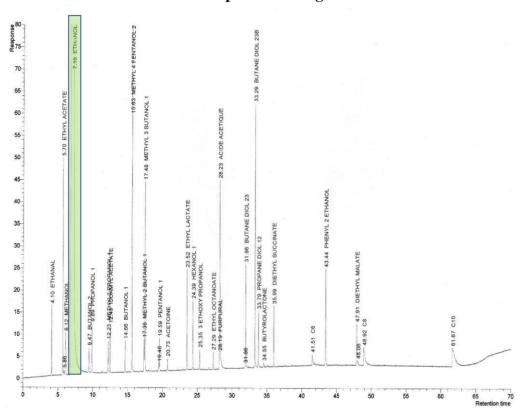


Figure 1: chromatogram of a standard solution of volatile compounds.

OIV-MA-AS315-27 : 20<mark>16</mark>27

ANNEX B Example chromatograms

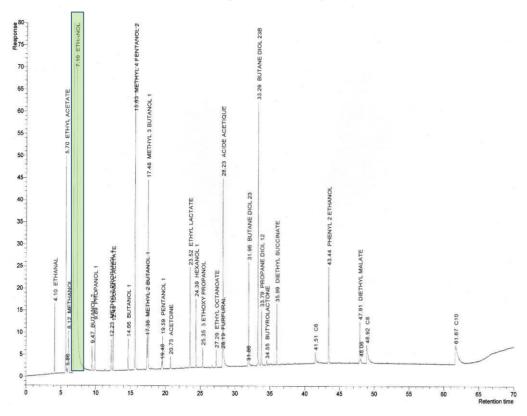


Figure 1: chromatogram of a standard solution of volatile compounds

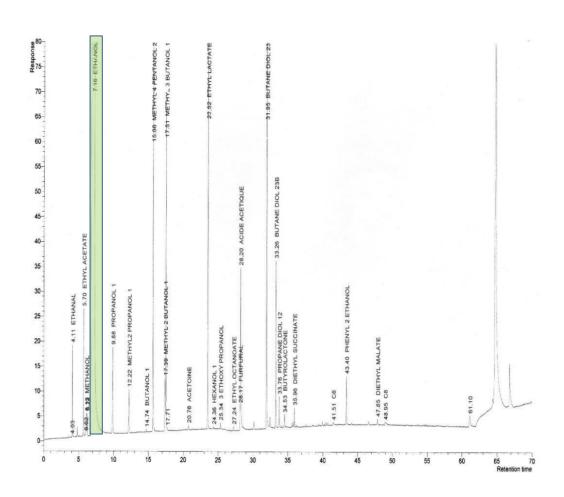


Figure 2 : chromatogram of volatile compounds in a white wine (sugar < 15 $\mbox{g/L})$

OIV-MA-AS315-27 : 20<mark>16</mark>27

