

V КОНГРЕСС «Наука, питание и здоровье»

РЕЗУЛЬТАТЫ АТТЕСТАЦИИ МЕТОДА ПРЯМОГО ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ ТОКСИЧНЫХ МИКРОПРИМЕСЕЙ В АЛКОГОЛЬНОЙ ПРОДУКЦИИ

Докладчик: Черепица Сергей Вячеславович^{1,2}, канд. физ.-мат. наук, доцент;

Соавторы: С.Н. Сытова¹, канд. физ.-мат. наук, доцент; Е.И. Коваленко², канд. биол. наук, доцент; А.Н. Коваленко^{1,2}; Н.И. Заяц³, канд. техн. наук, доцент; О.Н. Шелудько⁴, доктор техн. наук, доцент; Ю.Ф. Якуба⁴, доктор хим. наук, доцент; Л.Э. Чемисова⁴, канд. техн. наук,

¹НИУИ ЯП Белорусского государственного университета, г. Минск, Беларусь; ²ООО «Новые аналитические системы», г. Минск, Беларусь; ³Белорусский государственный технологический университет, г. Минск, Беларусь; ⁴ФБГНУ «Северо-Кавказский ФНЦ садоводства, виноградарства, виноделия», г. Краснодар, Россия

Актуальность

- Летучие соединения, включая альдегиды, эфиры, спирты, вносят значительный вклад во вкус, аромат и общий сенсорный профиль алкогольных напитков, но в высоких концентрациях являются токсичными.
- Точное определение летучих микропримесей в алкогольной продукции проводится с применением газохроматографических методов и имеет важное значение для обеспечения качества продукции, соответствия нормативным стандартам и безопасности потребителей.

Для минимизации потенциальных источников ошибок и упрощения процесса количественного анализа предложен метод с использованием **этанола**, содержащегося в анализируемых образцах, в качестве внутреннего стандарта

S.V. Charapitsa, S.N. Sytova, A.L. Korban, L.N. Sobolenko, J. AOAC Int., 102, 669-672 (2019)

Цель исследования

- 1. Установление метрологических характеристик предложенного модифицированного метода внутреннего стандарта (ММВС) и их сравнение с параметрами действующих ТНПА
- 2. Тестирование ММВС на ряде образцов алкогольной продукции для оценки его эффективности в различных матрицах

Приготовление стандартных водно-спиртовых растворов (ВСР)

Компоненты Гравиметрический метод • ацетальдегид • метилацетат • этилацетат • метанол • пропан-2-ол • пропан-1-ол • изобутанол • бутан-1-ол • изоамилол • этанол • деиониз.вода

1 раствор «С» - для установления градуировочных коэффициентов RRF

Летучий		Стандар	тные раст	г воры (<i>водн</i>	ю-спиртовые	е смеси ВСР)	
компонент	A 4000-6000	B 400-600	C 240-300	D 180-220	"1" 25,0-40,0	"2" 10,0-25,0	"3" 2,00-5,00
Ацетальдегид	4969 ± 20	499 ± 2	256 ± 1	203 ± 0,7	27,5 ± 0,10	$13,4 \pm 0,05$	$5,23 \pm 0,04$
Метилацетат	5073 ± 17	506 ± 2	258 ± 1	205 ± 0,6	24,9 ± 0,08	$10,5 \pm 0,03$	2,09 ± 0,01
Этилацетат	5052 ± 17	504 ± 2	257 ± 1	204 ± 0,6	24,8 ± 0,08	$10,4 \pm 0,03$	2,08 ± 0,01
Метанол	5074 ± 17	519 ± 2	272 ± 1	218 ± 0,6	39,1 ± 0,19	24,7 ± 0,16	$16,4 \pm 0,17$
Пропан-2-ол	5072 ± 17	508 ± 2	260 ± 1	207 ± 0,6	27,0 ± 0,08	$12,6 \pm 0,04$	4,24 ± 0,03
Пропан-1-ол	5163 ± 17	515 ± 2	263 ± 1	208 ± 0,6	25,3 ± 0,08	$10,7 \pm 0,03$	2,13 ± 0,01
2-Метилпропан-1-ол (изобутанол)	5059 ± 19	505 ± 2	257 ± 1	204 ± 0,7	24,8 ± 0,09	$10,5 \pm 0,04$	2,08 ± 0,01
Бутан-1-ол	5063 ± 17	505 ± 2	258 ± 1	204 ± 0,6	24,8 ± 0,08	$10,5 \pm 0,03$	$2,09 \pm 0,01$
3-Метилбутан-1-ол (изоамилол)	5203 ± 19	519 ± 2	265 ± 1	210 ± 0,7	25,5 ± 0,09	10,7 ± 0,03	2,14 ± 0,01

Крепость ВСР: 40 % об.от 10 % об. до 96 % об.

6 растворов «3», «2», «1», «D», «В», «А» для проверки линейности отклика детектора, оценки коэффициентов \mathbb{R}^2

Образцы алкогольных напитков

	Крепость		Крепость			Крепость
Gant	Виски (43 % об.)		Ром (40 % об.)	THEKY	Водка	(40 % об.)
Charles Control	Скотч (40 % об.)	***************************************	Джин (47% об.)	MITEOU	Спирт этилов ректификован	
pe bras	Бурбон (40 % об.)	(Karica	<i>Текилла (38 % об.)</i>	會	Саке	(14.5 % об.)
	Бренди (40 % об.)	I was	Граппа (40 % об.)	Maccel	Дистилляты, перегонке вин	полученные при (9-13 % об.)
	Кальвадос (40 % об.)		Ракия (40 % об.)	(Cn)	Дистиллят, п перегонке лике	•

Одноуровневая калибровка с внутренним стандартом - этанолом

Калибровочный раствор ВСР-С

Расчет относительного фактора отклика RRF^{этанол}

Этанол

Калибровка по ВСР-С с использованием внутреннего стандарта этанола

$$m{RRF}^{m{9maнon}} = \left(rac{C}{
ho_{m{9mahona}}}
ight) / \left(rac{A}{A_{m{9mahon}}}
ight)$$

$$ho_{\textit{этанола}} = 789270 \; \text{мг/л}$$

повторяемости

$$RRF_{i}^{\ \ jmanon} = rac{C_{i, ext{калибр}}^{\ cepm} \cdot \sum\limits_{k=1}^{M} \left(A_{i, ext{калибр}, k} \ / \ A_{\ \ jmanon, ext{калибр}, k}
ight)}{
ho_{jmanon} \cdot \sum\limits_{k=1}^{M} \left(A_{i, ext{калибр}, k} \ / \ A_{\ jmanon, ext{калибр}, k}
ight)^{2}}$$

для Mизмерений (1) BCP-C

где $A_{i,\kappa a \pi u \delta p,k}$

– величина отклика детектора на *i*-й летучий компонент, в единицах площади пика,

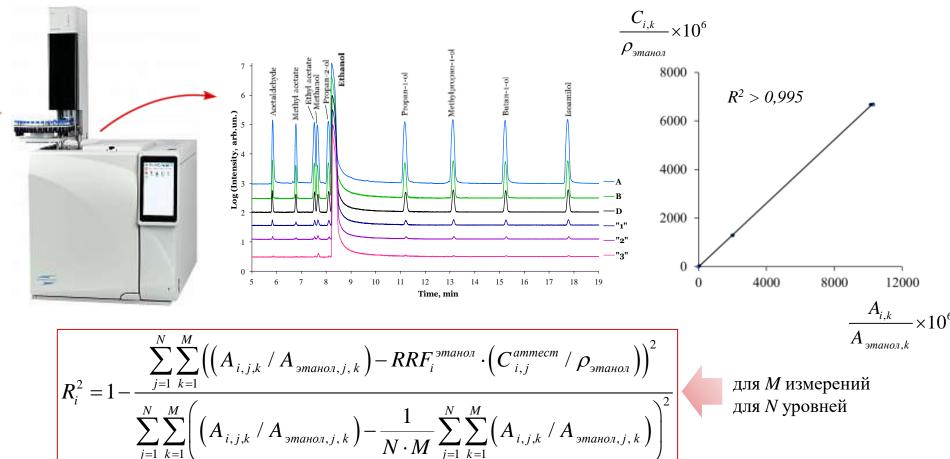
в условиях

- величина отклика детектора на эmанол, в единицах площади пика, при k-ом измерении,

 $C^{\mathit{cepm}}_{i,$ калибр

- сертифицированные (приписанные) значения концентрации i-го компонента в BCP-C, в мг/л AA

Проверка линейности отклика детектора


Стандартные ВСР

32128A

Аттестованные (сертифицированные, известные) значения концентрации С, в мг/л АА

6 уровней концентрации от 2-5 мг/л AA до 4000-6000 мг/л AA

Oпределение значений параметра линейности -коэффициента детерминации R^2

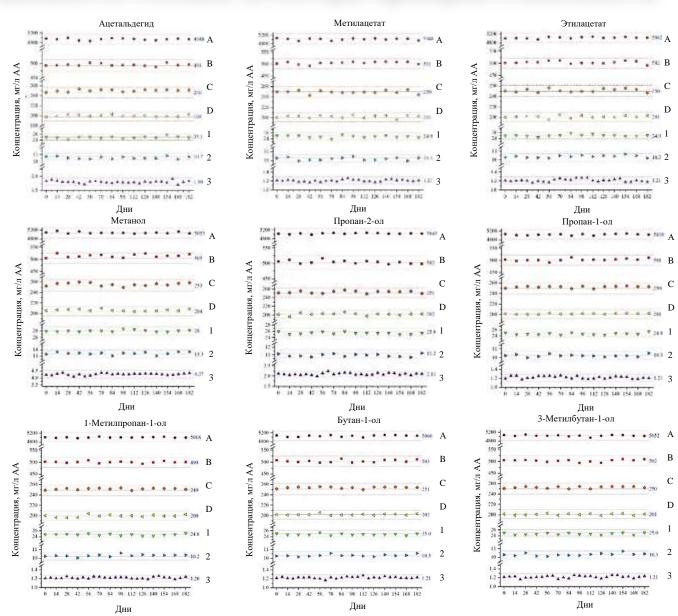
 $A_{i,j,k}$ – величина отклика детектора на i-й летучий компонент в j-м растворе при k-ом измерении;

 $A_{_{\mathfrak{I}} m a H O J, j, k}$ — величина отклика детектора на $\mathfrak{I} m a H O J$ в $\mathfrak{I} m$ растворе при $\mathfrak{I} m$ измерении;

 $C_{i,j}^{\mathit{ammecm}}$ — сертифицированные (приписанные) значения концентрации i-го компонента в j-м растворе

Результаты калибровки, оценки линейности отклика детектора, проверки стабильности

Относительный Коэффициент фактор отклика детерминации



Летучий компонент	RRFэтанол	R^2
Ацетальдегид	1,257	0,9994
Метилацетат	1,556	0,9997
Этилацетат	1,070	0,9994
Метанол	1,252	0,9995
Пропан-2-ол	0,803	0,9994
Пропан-1-ол	0,681	0,9992
Изобутанол	0,571	0,9992
Бутан-1-ол	0,617	0,9991
Изоамилол	0,564	0,9996

Измеренные значения концентрации компонентов в ВСР в различные дни в течение 6 месяцев

Формулы и критерии, использованные при определении метрологических параметров

- Проведены внутрилабораторные исследования в условиях промежуточной прецизионности с изменяющимися факторами «время + оператор» (I(TO)).
- Для результатов измерений, полученных в условиях повторяемости (по 2 измерения) и промежуточной прецизионности (15 пар измерений), проводили проверку на приемлемость в соответствии с требованиями серии стандартов СТБ ИСО 5725-2 и Еврахим.
- Все полученные данные проверялись на выбросы по критериям Кохрена и Граббса.

Измеренные значения концентрации:

$$C_i^{u_{3M}}[M\Gamma/\pi AA] = RRF_i^{g_{mahon}} \cdot \rho_{g_{mahon}} \cdot (A_i / A_{g_{mahon}})$$
(2)

Оценка приемлемости в условиях повторяемости:

$$\left|C_{i,1}^{u_{3M}} - C_{i,2}^{u_{3M}}\right| / \overline{C}_{i}^{u_{3M}} \cdot 100\% \le r_{i}$$
 реднее в условиях повторяемости (3)

Оценка приемлемости в условиях промежуточной прецизионности:

$$\left| \overline{C}_{i,1}^{u_{3M}} - \overline{C}_{i,2}^{u_{3M}} \right| / \left| \overline{\overline{C}}_{i}^{u_{3M}} \cdot 100 \right| \% \le \left(CD_{0,95} \right)_{i} = \sqrt{\left(R_{I(TO)i}^{2} \right) - r_{i}^{2} / 2} \implies \overline{\overline{C}}_{i}^{u_{3M}}$$
 результат (4)

$$\left| \overline{\overline{C}}_{i}^{u_{3M}} - C_{i}^{cepm} \right| / C_{i}^{cepm} \cdot 100 \% \le \alpha_{i} = 2 \cdot \sqrt{s_{I(TO) i}^{2} - s_{r i}^{2} / 2}$$
 (5)

Относительное СКО повторяемости: s_r , предел повторяемости: $r=2,8\cdot s_r$ Относительное СКО промежуточной прецизионности: $s_{I(TO)}$, предел пр.прецизионности: $R_{I(TO)}=2,8\cdot s_{I(TO)}$

Результаты: диапазоны измерений концентрации летучих компонентов, значения $s_r, s_{I(TO)}, r$, $R_{I(TO)}, U\%$, $CD_{0,95}$ и α , полученные при измерениях ВСР

Компонент	<i>С</i> ^{изм} , мг/л АА	s,, %	$s_{I(TO)}$, %	r, %	$R_{I(TO)}$, %	<i>U</i> , %	CD _{0,95} , %	a, %
A	5,28 - 13,5	3,5	4,0	10	11	13	8,7	6,3
Ацетальдегид	13,5* - 4969	2,5	3,0	7	9	8,4	6,7	4,8
Мотупполотот	2,09 - 10,5	5,0	6,0	14	17	16	13,4	9,7
Метилацетат	10,5* - 5073	2,5	3,0	7	9	8,3	6,7	4,8
Этиномото	2,08 - 10,4	5,0	6,0	14	17	16	13,4	9,7
Этилацетат	10,4* - 5052	2,5	3,0	7	9	8,3	6,7	4,8
Метанол	16,4 - 24,8	2,0	2,5	6	7	10	5,7	4,1
метанол	24,8* - 5074	1,5	2,0	4	6	7,4	4,7	3,4
Прочен 2 он	4,21 - 12,6	3,5	4,0	10	11	12	8,7	6,3
Пропан-2-ол	12,6* - 5072	2,0	2,5	6	7	7,5	5,7	4,1
Пиотог 1 от	2,13 - 10,7	5,0	6,0	14	17	16	13,4	9,7
Пропан-1-ол	10,7* - 5163	2,5	3,0	7	9	8,2	6,7	4,8
Иробутоууот	2,08 - 10,5	5,0	5,5	14	16	15	11,7	8,4
Изобутанол	· 10,5* - 5059	2,5	3,0	7	9	8	6,7	4,8
Francis 1 or	2,09 - 10,5	6,5	7,0	18	20	18	14,6	10,6
Бутан-1-ол	10,5* - 5063	2,5	3,0	7	9	8	6,7	4,8
Иродинан	2,14 - 10,7	5,0	5,5	14	15	15	11,7	8,4
Изоамилол	10,7* - 5203	2,5	3,0	7	9	8	6,7	4,8

^{*-} не включая

Министерствр квуки и высшего образования Российской Федирации фидеральное государстиенное автономное образовательное учреждения высыети образование инациональный исследовательской Томский идиительноской университет» (TRV) Process, 634050, r. Touce, ep. /lennes, nou 50

ЗАКЛЮЧЕНИЕ № 28/2024 от 18.12.2024 г

о соответствии / несоответствии методики (метода) измерений установленным метрологическим требонанном к измеренним

Методики (метод) измерений регламентирована в документе «Методики измерений миссовой конциотрации альдегидов, сложных эфиров, метилового спирта и высших спирнов в спиртосодержащей продукции методом газовой хроматографии»

разработана Федеральным государственным биджетным научным учреждением «Северо-Кавказский Фидиральный научный центр садоводства, виноградарства, виполезия» (ФГБНУ СКФНЦСВВ) (350901, Российския Федерации, Красиодарский край, г. Краспидар, ул. им. 40-летик Победы, д. 39) и Научно-исследовательским учреждением «Институт клерных проблем» Белорусского государственного университета (НИИ ЯП) БГУ) (220006, Республика Беларусь, г. Минск, ул. Бобруйская, 11).

Аттестация проведена на основания Договора № 03.08.03-327/2024у ит 04.09.2024 г. с Федеральным государственным бюджетным инучным учреждением «Северо-Канказский Федеральный виучный центр саловодства, виноградарства, виноделия (ФГБНУ СКФИПСВВ)

Материалы, представлениые на аттествцюю:

- Проект документа «Методика измерений массовой концентрации альдегидов, слежных эфиров, метилового спирта и высших епиртов в спиртосодержащей продукции методом. газовой хроматографии» на 36 д. в электронной форме;
- Отчет о проведении экспериментальных исследований показателей точности методики измерений «Методики измерений массовой концентрации альдетилов, сложных эфиров, метилового спирта и высших спиртов в спиртосодержащей продукции метолим глизой хроматография»», на 81 л. в хлектронной форме;
- Исходные данные (свидетельства о поверке средств измереняй, паспорта на стандартные обращы и реактивы) в электронной форме.

Методики измерений, изложения в документе ФГБНУ СКФИЦСВИ «Методика измерений миссоной концентрации альдегидии, сложных эфиров, метилилого епирти и высших спиртов в слиргосодержащей продукции методом газивой кроматографиирегламентирует измерения мыссовой концентрации альдигидов (этапаля (ацетальдегида)), сложных эфиров (метилиновта (метилацетита), этилотановта (этилацетита)), метанола (метилового спирта) и высших спиртов (пропан-2-ола (игор-пропилового спирта)), произв-1-ола (в-произволого спарта). 2-метилирован-1-ола (взобутилового спарта), бутан-1-ола (и-бутилового спирта), 3-метилбутан-1-ола (изовмилового спирта) в спирте упиловом из пиппевого сырыя, алкогольной продукция, спиртных и слабовлюгольных ражищих пинцевых продуктах методом

уемых детучих компонентов приведен

ишентрации зетучих комровентов и

	ли белицион содт
	до 4969 васноч.
Ht 2,09	20 2073 mcnore.
HY 2.08	до 5052 виспоч.
BY 16,4	po 5074 nazwes
arr 4.21	An 5072 namers.
pr.2.13	до 5163 включ.
BY 2,08	до 5059 вилиоч.
nr 2.09	до 5063 вызвачь.

применения соещишистами научноых и других забораторий.

ультатов измерений с показателями риведенных в табляще 2.

пиленности измерсиий

ия: 2,14 до 5203 валасч

ME ME METH	Стикаренов отклонение восприятивля- ности и _p , %	Отнисительная россиоренняя напоределенняють (пры 8 – 2, Р=2, 93) б., %
	4,0 3,0 6,0 3,0	13
	3,0	8,4
	9,0	16
	3,6	10
	5.7	16
_	3.0	- 63
_	5.0 3.0 2.3 2.0 4.0	8,3 10 7,4
-	2.0	7,4
-	4//	12
	2,5	7,5
	6.0	16
	3,0	1,2
	3,5	15
	3,0	8.0
	7,0	19
	3,0	8.0
	5,5	15
	3,0	1,0

mene.	Yem	1000	ш	min	100v	N/Hi	me	nesis	NETHERN

Ш			W 2		A STATE	20,000	of Lines	2/2						
		ALCOHOL:			e suo	COMPANY.	100	11000	des	10001	146	100	****	THE REAL PROPERTY.
800	E F 9	100	833	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 fg 9	NE P	E 0	Eğo.	문불의	ğş2	を養り	Ego.	1 N N N	[+EP
	ŀ	Ī	Ī		Ī	Ī	I		Ī	Ī	Ī			-
Q	č	c	E	ii.	ï	Ģ	č	S	å	¢	0	ć	ă	S.
		Ti.	0.0	ž.		E		12	144	E	1,65		14	17.

Tennieses

ЗАКЛЮЧЕНИЕ № 28/2024 от 18.12.2024 г

о соответствии / несоответствии методики (метода) измерений установленным метрологическим требованиям к измерениям

киронзводимости приведены в

MOX.	Hyener
гиости	нистроноводимисти-
ME DESTRUCTION	OWNOCUTEDANCE MANAGEMENT
SWOOTH .	Jantyceachurn
HR MCKZY	рискомпения между
MATERIAL PROPERTY.	двумя результатими
почности	resepensil,
BOOK N	полученными к уканиви
MOCTN)	вистромавливности)
4	A %
10	11
	9
	17
	17
	7
19	7 6
-	111
	7
	17
	ų.
	16
(4)	20
	9
	15
	· ·

ованиям Приказа Министерства 1091 «Об утверждения Порядка тмерений, референтных методин ос применением и ГОСТ Р в.563измерений. Методики (методы)

Документ, устанивливанний требования

Искацинае данные на разработку и STREET, SHIPPORTS AND PROPERTY.

MH 1967-89 Pennsympton ICH. Выбор методов и средств тыерений при разработке митилик ыналиения измерений. Общиг BOSCHYMER

50.2.090-2013 ГСИ, Метплики обличественного диминирового нализа. Общие требования «

Документ, устанавлевановий требенании

разриботие, ATTICITATION.

Немилные данные на регработку и втерствинно методики.

Зыстануваниямные документы на невольтуемые средства измерений

Гребования в показателям точности измерений для разрабатываемый устоповлены, MEDICAL STREET BEDEZICTERS: STORU ниноскители винисти методики измерений были эктиновасны 69C9607860 межериментального исследования. POCT 34100.3-2617 Ирином интенность измерения. Haen. Pynosozerso no ныражению ногореживниети MEMORPHOOS.

РМГ 61-2010 Госулярственняя уметемя обеспечения саннетка измерений. Показателя невысети. провенняем на писцианализателя количественного вимическиго анализа. Методы

Эксплуатационные документы на используемые средства измерений, действующие спидетельства о воверки средств измерений, выспорта но стицартные обращы

Востиничения Приниченени Inconficenti Georgiania No 829 or 31. жтября 2009 года «Об утветждения выпожения о единицах желичина вопускаемых в принциению в оссийской Федерации»

FOCT 8.417-2024 Focyaspersonnas итома обеспечения канистия

Локумент, устанавливанный требования (ECID:

FOCT 8.563-2009 **Тосударстичния** система обеспечения идинства измерений HECH) Митолики измерений.

Egemen

FOCT 6687,0-86 Предукция беталкогольной промышленности. Примоги присина и метеды инбори

FOCT 28539-90 Coop minutesстиртованные. Технические условое

FIRCT 31730-2012 Hponysium винопальческая. Привили присмом и метилы отбора проб.

FOCT 32035-2013 Busine is notice реобые. Правила приемок и метеды

FOCT 32036-2013 Coupt этимный из пищевого сырья. Правила приномном и методых аналогия

32080-2013 Husenes дикеровиличные. Правила приемки M. MATTOLISM SHIRATHTS

FOCT 34795-2021 Happren слабоильогольные спиртовинные. Общие технические условия

HMF 96-2009 Fueyaspersessas еметема обоспечения единства измерений (ГСИ). Репультаты и зарактеристики вичества измерений. Формы предствления

FOCT 34100.3-2012 візнерення. 3. Pysusoactsu no вырожение. осопределенности MEMODORES

PMF 29-2013 Focyamermonia система обоспечения конистан измерений (ГСИ). Метрология. Основные термины и спределения.

FOCT P 1.12-2020 Cronuspressure a Российской Фелерации. Термины и определения

РМГ 91-2019 Государственная

Ликумент, устанавливающий требования

обеспечения CROCCER CHCTCMI вмерений (ГСИ), Совместное HEROCO, WARRENDER remore traffi погрешность HTHAT DESIGNATION A веопреженовость MUMEROCKING O Общие пренципы

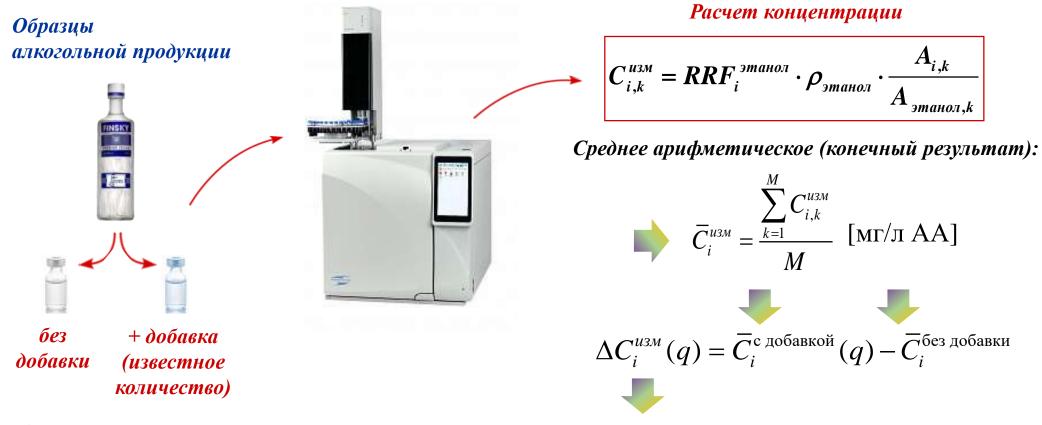
XXXT 8.315-2019 Foeyangernmun системи обеспечения единства имерений (ГСИ). Станцартных образам состава и свойств веществ и могириалия. Основные полимения PMI 76-2014 FCH. Hogypominit вригроль качестви результитов

кванчествонного кимического

ым госудирственным бюджитным вий изучный центр саловолства, ысилы учрежлением «Институт университета и изложенная в ин ильдегидов, сложных эфоров, шей продукции методом газовой ринопическим требованиям к

К.А. Рыживския

А.В. Коробона


https://fgis.gost.ru/fundmetrology/registry/16/items/1423560

Список рассмотренной ТНПА, регламентов ЕС и ЕАЭС – в которой регламентируются ГХ методы определения летучих компонентов в алкогольной И спиртосодержащей продукции

Разрабатываемый межгосударственный

Nº	_	мативні ент (ТН		Название
1	ГОСТ	30536	-2013	Водка и спирт этиловый из пищевого сырья. Газохроматографический экспресс-метод определен содержания токсичных микропримесей
2	СТБ ГОСТ Р	51698	-2001	Водка и спирт этиловый. Газохроматографический экспресс-метод определения содержания токсичных микропримесей
3	ГОСТ	32039	-2013	Водка и спирт этиловый из пищевого сырья. Газохроматографический метод определения подлинности
4	ГОСТ	31684	-2012	Спирт этиловый-сырец из пищевого сырья. Газохроматографический метод определения содержания летучих органических примесей
5	ГОСТ	33834	-2016	Продукция винодельческая и сырье для ее производства. Газохроматографический метод определения массовой концентрации летучих компонентов
6	ГОСТ Р	57893	-2017	Продукты брожения и сырье для их производства. Газохроматографический метод определения массовой концентрации летучих компонентов
7	ГОСТ Р	51999	-2002	Спирт этиловый технический синтетический ректификованный и денатурированный. Технически условия
8	ГОСТ Р	55878	-2013	Спирт этиловый технический гидролизный ректификованный. Технические условия
9	ГОСТ	33408	-2015	Коньяки, дистилляты коньячные, бренди. Определение содержания альдегидов, эфиров и спиртов методом газовой хроматографии
10	ГОСТ	34675	-2020	Дистилляты зерновые и ромовые, дистиллят виски, напитки спиртные на их основе. Газохроматографический метод определения концентрации летучих компонентов
11	FOCT	33833	-2016	Напитки спиртные. Газохроматографический метод определения объемной доли метилового спир
12	Регламент 110/2008	т (ЕС):		по вкусоароматическим добавкам и некоторым пищевым ингредиентам, обладающим ароматическими свойствами, которые используют в пищевых продуктах и на их поверхности
13	ТР ЕАЭС	: 47/201	8	«О безопасности алкогольной продукции»
14	ГОСТ	XXX	-2027	Определение массовой концентрации альдегидов, сложных эфиров, метилового спирта и высших спиртов в спиртосодержащей продукции методом газовой хроматографии

Метод «стандартных добавок» для оценки матричного эффекта при измерении концентрации летучих компонентов в образцах алкогольной продукции

Добавки летучих компонентов q: 10; 250; 1000; 5000 мг/л AA

в ВЭС с крепостью как у образца алкогольной продукции

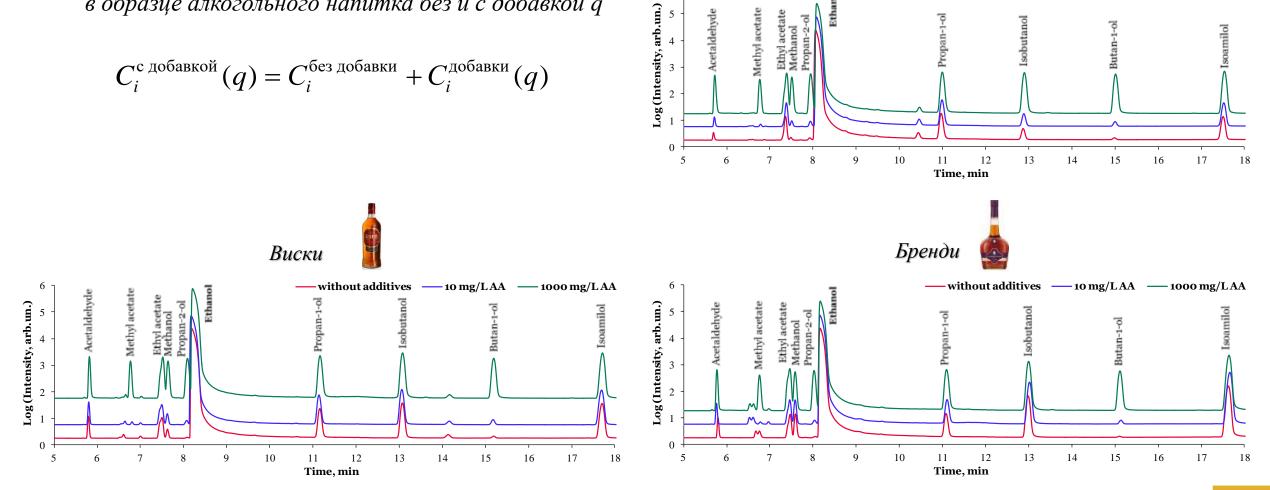
$$C_i^{cepm}(q)$$

Оценка правильности по относительному смещению:

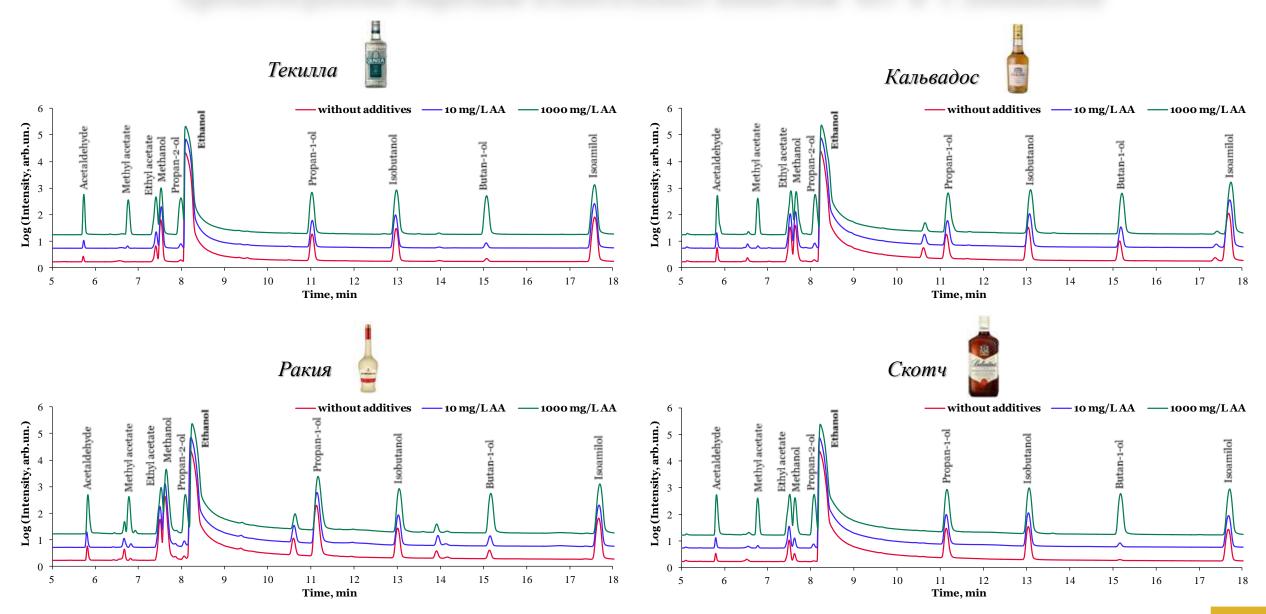
$$Z_{i}(q) = \frac{\left| \Delta C_{i}^{usm}(q) - C_{i}^{cepm}(q) \right|}{C_{i}^{cepm}(q)} \cdot 100\% \le \alpha_{i}$$
 (6)

Хроматограммы образцов алкогольных напитков без и с добавками

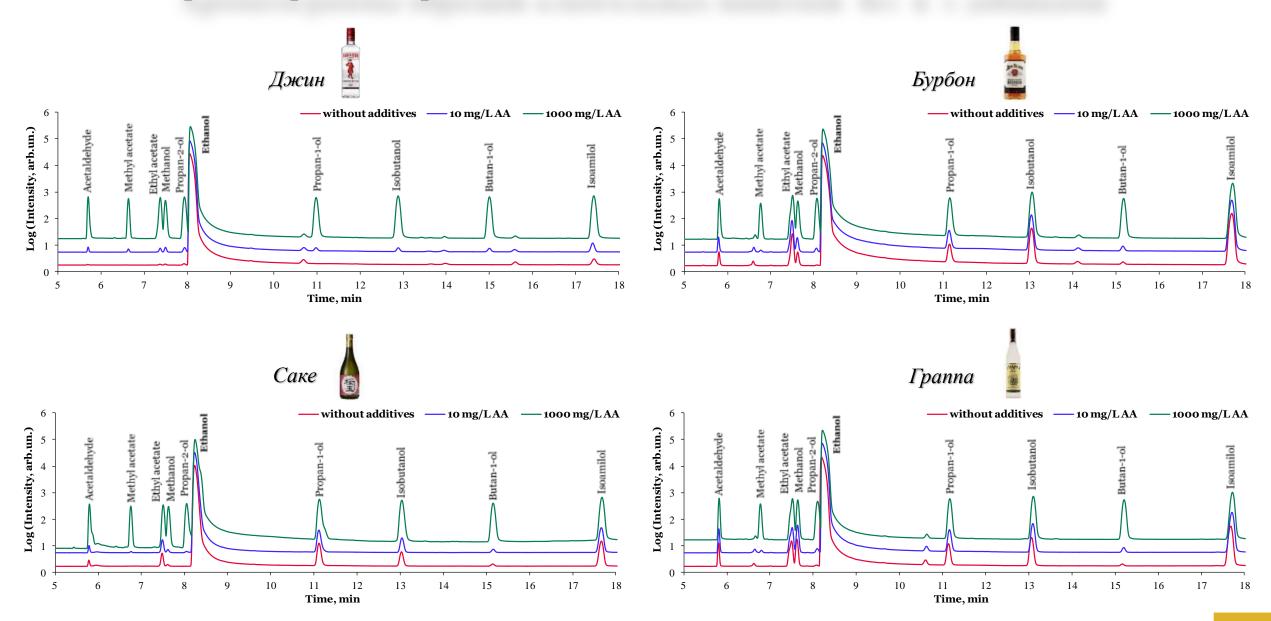
Acetaldehyde


Methyl aceta

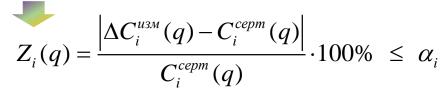
Ром


- without additives --- 10 mg/LAA --- 1000 mg/LAA

Значения концентраций і-х летучих компонентов в образце алкогольного напитка без и с добавкой q


$$C_i^{ ext{c добавкой}}(q) = C_i^{ ext{без добавки}} + C_i^{ ext{добавки}}(q)$$

Хроматограммы образцов алкогольных напитков без и с добавками


Хроматограммы образцов алкогольных напитков без и с добавками

Измеренные концентрации летучих соединений в исследуемых образцах, мг/л АА

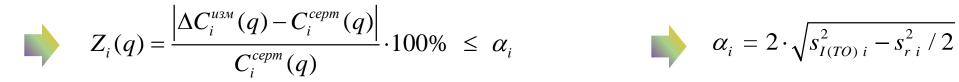
Алкогольный	Крепост	Крепость, % об.		Метилацетат	Этилацетат	Метанол	Пропан-2-ол	ан-1-ол	Изобутанол	Бутан-1-ол	Изоамилол
напиток	заявленная	измеренная	Ацегальдегид	Мети	Этил	Мел	Проп	Пропан-1	Изоб	Бута	Изоа
Бурбон	40	40 ± 0,06	98,3	-	611	114	1,79	181	722	8,58	3267
Бренди	40	40 ± 0.06	160	-	354	342	4,94	262	1138	3,31	3227
Кальвадос	40	40 ± 0.06	89,4	-	631	958	5,17	335	545	166	2259
Джин	47	47 ± 0,06	2,28	-	1,71	4,36	3,71	-	-	-	10,6
Граппа	40	40 ± 0,06	221	-	452	439	2,68	209	325	5,45	1113
Ликёр	18	18 ± 0,06	23,1	-	3,04	6,88	-	1,54	-	-	50,4
Ракия	40	40 ± 0,06	107	46,8	1190	12231	11,1	4221	454	42,3	1306
Ректиф. этанол	40	40 ± 0.06	2,54	-	-	3,31	2,63	-	-	-	-
Ром	40	40 ± 0.06	34,8	-	260	13,8	7,43	327	49	4,5	229
Саке	14,5	$14,5 \pm 0,06$	45,4	-	137	24,7	-	638	198	19,7	738
Скотч	40	40 ± 0,06	36,9	-	215	48,1	2,28	579	565	2,98	534
Текилла	38	38 ± 0.06	29,1	-	124	1714	6,11	362	522	10,1	1702
Водка	40	40 ± 0,06	1,86	-	-	9,7	1,52	-	-	-	-
Виски	43	43 ± 0,06	63	-	303	67,4	3,02	581	564	3,35	729
Белое сухое вино	9,0-13,0	$9,9 \pm 0,06$	666	-	548	406	12,1	157	334	11,4	1791

Относительное смещение

Контрольные значения

$$\alpha_i = 2 \cdot \sqrt{s_{I(TO)i}^2 - s_{ri}^2 / 2}$$

Спиртной напиток	Летучий компонент	$Z_i(10), \%$	Z_i (250), %	$Z_i(1000), \%$	$Z_i(5000), \%$
Виски	Ацетальдегид	1,4 (<6)	1,0 (<5)	2,1 (<5)	1,4 (<5)
١.	Метилацетат	3,1 (<10)	1.4 (<5)	1,0 (<5)	1,6 (<5)
Same Same	Этилацетат	1,1 (<10)	1,1 (<5)	1,6 (<5)	1,8 (<5)
	Метанол	1,8 (<4)	0,2 (<3)	1,7 (<3)	1,3 (<3)
	Пропан-2-ол	1,5 (<6)	0,4 (<4)	1,4 (<4)	1,9 (<4)
	Пропан-1-ол	3,1 (<10)	1,7 (<5)	0,5 (<5)	2,3 (<5)
	Изобутанол	1,0 (<8)	0,5 (<5)	0,6 (<5)	2,6 (<5)
	Бутан-1-ол	2,5 (<11)	1,5 (<5)	2,7 (<5)	2,0 (<5)
	Изоамилол	1,3 (<8)	0,3 (<5)	1,8 (<5)	0,8 (<5)

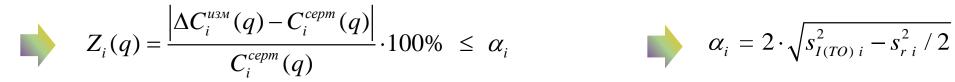

Летучий компонент	Концентрация, мг/л АА	α, %
A	5,28 - 13,5	6
Ацетальдегид	13,5* - 4969	5
Мотинонотот	2,09 - 10,5	10
Метилацетат	10,5* - 5073	5
Этинополот	2,08 - 10,4	10
Этилацетат	10,4* - 5052	5
Метанол	16,4 - 24,8	4
Метанол	24,8* - 5074	3
Пропон 2 оп	4,21 - 12,6	6
Пропан-2-ол	12,6* - 5072	4
Пропон 1 од	2,13 - 10,7	10
Пропан-1-ол	10,7* - 5163	5
Иробутонов	2,08 - 10,5	8
Изобутанол	10,5* - 5059	5
Будан 1 од	2,09 - 10,5	11
Бутан-1-ол	10,5* - 5063	5
14,,,,,,,,,,,	2,14 - 10,7	8
Изоамилол	10,7* - 5203	5

Стандартное отклонение:

 $S_{I(TO)}$ - промежуточная прецизионность (с вариацией факторов «время» и «оператор»)

 s_r — повторяемость (при постоянных экспериментальных условиях)

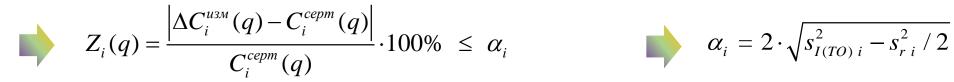
*- не включая

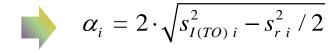


$$\alpha_i = 2 \cdot \sqrt{s_{I(TO)i}^2 - s_{ri}^2} / 2$$

Спиртной напиток	Летучий компонент	$Z_i(10)$, %	$Z_i(1000), \%$	Z_i (5000), %		
	Ацетальдегид	1,8	3,1	1,2	0,2	
Бурбон	Метилацетат	2,3	1,4	0,4	0,6	
	Этилацетат	1,7	0,7	2,7	0,0	
_	Метанол	2,1	1,1	1,8	1,3	
	Пропан-2-ол	2,7	0,3	1,0	0,6	
Jan Dian	Пропан-1-ол	3,2	1,3	0,9	0,8	
NO. NO.	Изобутанол	1,4	1,5	2,6	0,9	
-	Бутан-1-ол	1,4	0,1	0,4	0,8	
	Изоамилол	1,0	2,6	1,3	0,8	
	Ацетальдегид	2,7	2,0	1,9	2,7	
Бренди	Метилацетат	2,5	3,0	3,1	1,1	
	Этилацетат	0,6	2,2	1,7	0,2	
	Метанол	1,7	1,1	1,8	0,9	
	Пропан-2-ол	1,7	2,8	0,6	2,6	
	Пропан-1-ол	1,4	0,2	2,8	0,8	
	Изобутанол	1,0	2,7	2,7	0,6	
	Бутан-1-ол	2,9	1,3	1,0	2,6	
	Изоамилол	0,3	1,2	1,2	2,4	

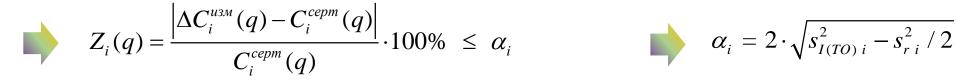
Летучий компонент	Концентрация, мг/л АА	a, %
А ното на пори п	5,28 - 13,5	6
Ацетальдегид	13,5* - 4969	5
Мотипонотот	2,09 - 10,5	10
Метилацетат	10,5* - 5073	5
Этинонотот	2,08 - 10,4	10
Этилацетат	10,4* - 5052	5
Метанол	16,4 - 24,8	4
Merahon	24,8* - 5074	3
Процен 2 од	4,21 - 12,6	6
Пропан-2-ол	12,6* - 5072	4
Процен 1 од	2,13 - 10,7	10
Пропан-1-ол	10,7* - 5163	5
Иробулганон	2,08 - 10,5	8
Изобутанол	10,5* - 5059	5
Гутон 1 од	2,09 - 10,5	11
Бутан-1-ол	10,5* - 5063	5
Иродинан	2,14 - 10,7	8
Изоамилол	10,7* - 5203	5

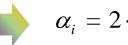




$$\alpha_i = 2 \cdot \sqrt{s_{I(TO)i}^2 - s_{ri}^2 / 2}$$

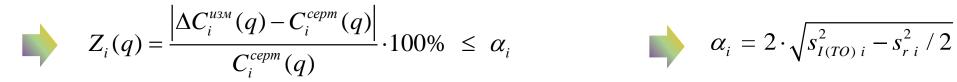
Спиртной напиток	Летучий компонент	$Z_i(10)$, %	$Z_i(250), \%$	Z_i (1000), %	Z_i (5000), %	
	Ацетальдегид	0,9	1,1	2,8	1,2	
Ром	Метилацетат	0,6	1,0	2,8	0,5	
	Этилацетат	2,0	1,7	2,1	1,9	
2	Метанол	1,1	2,2	1,5	2,1	
	Пропан-2-ол	0,7	0,1	1,5	1,4	
	Пропан-1-ол	1,4	0,7	2,6	1,4	
	Изобутанол	2,9	0,0	1,3	0,8	
	Бутан-1-ол	0,4	1,5	1,8	1,2	
	Изоамилол	2,9	0,1	2,5	1,8	
	Ацетальдегид	2,1	2,4	1,8	2,5	
Граппа	Метилацетат	0,1	0,0	0,3	2,7	
	Этилацетат	0,0	0,4	2,3	2,4	
	Метанол	2,2	1,9	1,2	1,9	
A	Пропан-2-ол	0,3	3,0	3,0	0,0	
71 <u>00</u> 5.	Пропан-1-ол	2,5	2,7	3,1	0,5	
	Изобутанол	1,9	0,9	0,5	0,2	
	Бутан-1-ол	0,2	0,8	2,3	0,4	
	Изоамилол	2,5	2,2	2,1	0,2	


Летучий компонент	Концентрация, мг/л АА	a, %
А ното на порин	5,28 - 13,5	6
Ацетальдегид	13,5* - 4969	5
Метилацетат	2,09 - 10,5	10
Метилацетат	10,5* - 5073	5
Этиномотот	2,08 - 10,4	10
Этилацетат	10,4* - 5052	5
Метанол	16,4 - 24,8	4
метанол	24,8* - 5074	3
Процен 2 од	4,21 - 12,6	6
Пропан-2-ол	12,6* - 5072	4
Пропан-1-ол	2,13 - 10,7	10
пропан-1-ол	10,7* - 5163	5
Иробулганон	2,08 - 10,5	8
Изобутанол	10,5* - 5059	5
Бутон 1 ол	2,09 - 10,5	11
Бутан-1-ол	10,5* - 5063	5
Иродинан	2,14 - 10,7	8
Изоамилол	10,7* - 5203	5



Спиртной напиток	Летучий компонент	$Z_i(10)$, %	$Z_i(250), \%$	$Z_i(1000), \%$	Z_i (5000), %	
	Ацетальдегид	0,1	1,6	1,1	1,5	
Текилла	Метилацетат	0,2	1,9	1,2	0,5	
	Этилацетат	1,2	0,8	1,8	2,4	
н	Метанол	1,8	0,3	1,9	0,1	
	Пропан-2-ол	0,9	1,7	0,8	1,7	
OUNIEA.	Пропан-1-ол	1,0	2,2	0,7	1,3	
	Изобутанол	1,1	0,8	2,6	2,4	
	Бутан-1-ол	1,7	0,3	1,0	1,6	
	Изоамилол	2,2	1,6	0,2	0,9	
	Ацетальдегид	0,4	0,3	0,9	0,6	
Ракия	Метилацетат	0,6	3,2	2,6	0,0	
	Этилацетат	0,5	0,0	1,6	2,1	
	Метанол	0,7	1,8	0,5	1,5	
	Пропан-2-ол	0,7	0,3	2,4	1,8	
	Пропан-1-ол	2,9	1,7	1,5	0,3	
	Изобутанол	0,7	1,0	0,7	2,3	
	Бутан-1-ол	0,5	1,1	2,4	2,5	
	Изоамилол	1,6	0,6	1,5	0,8	

Летучий компонент	Концентрация, мг/л АА	a, %
Апатоні парил	5,28 - 13,5	6
Ацетальдегид	13,5* - 4969	5
Метилацетат	2,09 - 10,5	10
метилацетат	10,5* - 5073	5
Этинаната	2,08 - 10,4	10
Этилацетат	10,4* - 5052	5
Мотоглот	16,4 - 24,8	4
Метанол	24,8* - 5074	3
Процен 2 од	4,21 - 12,6	6
Пропан-2-ол	12,6* - 5072	4
Пропан-1-ол	2,13 - 10,7	10
пропан-1-ол	10,7* - 5163	5
Изобутанол	2,08 - 10,5	8
Изобутанол	10,5* - 5059	5
Бутан-1-ол	2,09 - 10,5	11
Бутан-1-0л	10,5* - 5063	5
Изоамилол	2,14 - 10,7	8
Изоамилол	10,7* - 5203	5



$$\alpha_i = 2 \cdot \sqrt{s_{I(TO)i}^2 - s_{ri}^2} / 2$$

Спиртной напиток	Летучий компонент	$Z_i(10), \%$	$Z_i(250), \%$	$Z_i(1000), \%$	$Z_i(5000), \%$	
	Ацетальдегид	2,1	2,6	2,5	1,3	
Кальвадос	Метилацетат	1,1	0,4	0,3	1,1	
	Этилацетат	0,4	1,0	3,0	3,0	
	Метанол	2,0	0,7	2,1	2,3	
	Пропан-2-ол	0,5	1,2	1,9	0,9	
	Пропан-1-ол	0,2	2,9	0,1	0,3	
	Изобутанол	1,1	0,1	2,7	0,5	
	Бутан-1-ол	0,8	2,6	0,0	0,8	
	Изоамилол	0,8	1,8	2,2	1,6	
	Ацетальдегид	1,2	0,2	1,3	0,7	
Скотч	Метилацетат	0,4	0,1	2,6	1,9	
14	Этилацетат	3,1	0,3	2,9	2,8	
	Метанол	1,5	0,6	2,2	0,0	
	Пропан-2-ол	1,6	1,8	2,8	1,8	
	Пропан-1-ол	1,0	0,7	0,9	1,5	
_	Изобутанол	2,6	2,6	0,4	1,1	
	Бутан-1-ол	0,4	0,4	2,4	2,0	
	Изоамилол	1,9	1,1	2,4	0,8	

Летучий компонент	Концентрация, мг/л АА	a, %
Анатоні пагил	5,28 - 13,5	6
Ацетальдегид	13,5* - 4969	5
Метилацетат	2,09 - 10,5	10
Метилацетат	10,5* - 5073	5
Этиномотот	2,08 - 10,4	10
Этилацетат	10,4* - 5052	5
Метанол	16,4 - 24,8	4
ТУТСТАНОЛ	24,8* - 5074	3
Пропон 2 он	4,21 - 12,6	6
Пропан-2-ол	12,6* - 5072	4
Пропан-1-ол	2,13 - 10,7	10
Пропан-1-ол	10,7* - 5163	5
Иробутонол	2,08 - 10,5	8
Изобутанол	10,5* - 5059	5
Бутон 1 он	2,09 - 10,5	11
Бутан-1-ол	10,5* - 5063	5
Иродиния	2,14 - 10,7	8
Изоамилол	10,7* - 5203	5

$$\alpha_i = 2 \cdot \sqrt{s_{I(TO)i}^2 - s_{ri}^2 / 2}$$

Спиртной напиток	Летучий компонент	$Z_i(10)$, %	Z_i (250), %	$Z_i(1000), \%$	$Z_i(5000), \%$	
	Ацетальдегид		0,5	0,0	2,9	
Джин	Метилацетат	0,7	1,1	0,3	2,4	
	Этилацетат	2,6	1,5	2,5	3,1	
<u>#</u>	Метанол	0,5	1,2	2,1	1,9	
	Пропан-2-ол	1,8	2,0	1,2	3,0	
in the same	Пропан-1-ол	1,4	2,2	0,7	3,1	
-	Изобутанол	0,6	0,5	1,3	2,7	
	Бутан-1-ол	1,2	2,2	0,6	2,8	
	Изоамилол	0,5	1,9	2,6	0,4	
	Ацетальдегид	1,6	2,0	0,6	0,9	
Саке	Метилацетат	0,1	0,1	0,2	2,5	
	Этилацетат	2,5	1,4	0,9	2,3	
1	Метанол	2,3	1,4	0,3	1,5	
	Пропан-2-ол	0,2	0,6	0,9	0,6	
鲎	Пропан-1-ол	1,8	0,2	1,8	0,5	
	Изобутанол	2,7	2,7	1,1	0,4	
	Бутан-1-ол	1,0	1,2	0,2	0,3	
	Изоамилол	2,7	0,3	1,3	2,4	

Летучий компонент	Концентрация, мг/л АА	a, %
А ното на порил	5,28 - 13,5	6
Ацетальдегид	13,5* - 4969	5
Метилацетат	2,09 - 10,5	10
Метилацетат	10,5* - 5073	5
Этиномотот	2,08 - 10,4	10
Этилацетат	10,4* - 5052	5
Матамал	16,4 - 24,8	4
Метанол	24,8* - 5074	3
Процен 2 од	4,21 - 12,6	6
Пропан-2-ол	12,6* - 5072	4
Пропон 1 он	2,13 - 10,7	10
Пропан-1-ол	10,7* - 5163	5
Иробутонон	2,08 - 10,5	8
Изобутанол	10,5* - 5059	5
Еутон 1 он	2,09 - 10,5	11
Бутан-1-ол	10,5* - 5063	5
Иосогия	2,14 - 10,7	8
Изоамилол	10,7* - 5203	5

ЗАКЛЮЧЕНИЕ

- На основании полученных результатов экспериментальных исследований выполнена аттестация метода в соответствии с требованиями ГОСТ Р 8.563-2009 и получено свидетельство № 08-47/584.0 1.00 1 43-2013.2025 https://fgis.gost.ru/fundmetrology/registry/16/items/1423560.
- Метод, основанный на идее использования этанола в качестве вещества внутреннего стандарта для количественного определения летучих компонентов в алкогольной продукции, по результатам межлабораторных испытаний в 49 таможенных лабораториях Европейского Союза, в 2024 году принят в качестве официального регламента ILIADe 453:2024 | CLEN Method.
- Метод получил высокую оценку экспертного сообщества и 27 сентября 2023 года на 66-ой сессии комиссии «Методы анализа» Международной межправительственной организации виноградарства и вина (MOBB-OIV) предложенный проект OENO-SCMA 24-756 «Method for determination of volatile compounds in spirituous beverages of vitivinicultual origin using contained ethanol as a reference substance» был включен в план по разработке международного стандарта в рамках единой восьми этапной процедуры, предусмотренной Уставом МОВВ. Проект **OENO-SCMA 24-756** на заседании 68-ой сессии комиссии «Методы анализа» МОВВ-ОIV 11.03.2025 перешел на 5-й этап процедуры МОВВ.
- Данные обстоятельства указывают на хорошую перспективу разработки на основе предложенного метода соответствующих межгосударственных и международных стандартов.

О валидации метода

- Модифицированный метод определения летучих компонентов в спиртных напитках с использованием содержащегося в них этанола в качестве референсного вещества представляет собой мощный и практичный инструмент для контроля качества, соблюдения нормативных требований и рутинного анализа в алкогольной промышленности.
- Каждая лаборатория в процессе анализа образцов алкогольных продуктов имеет большой объем архивных данных (хроматограмм), причем пик этанола регистрируется наряду с пиками различных летучих компонентов.
- По материалам представленной работы каждый желающий может проверить новый метод в своей лаборатории, используя имеющиеся архивные экспериментальные данные, и убедиться в работоспособности и эффективности метода.

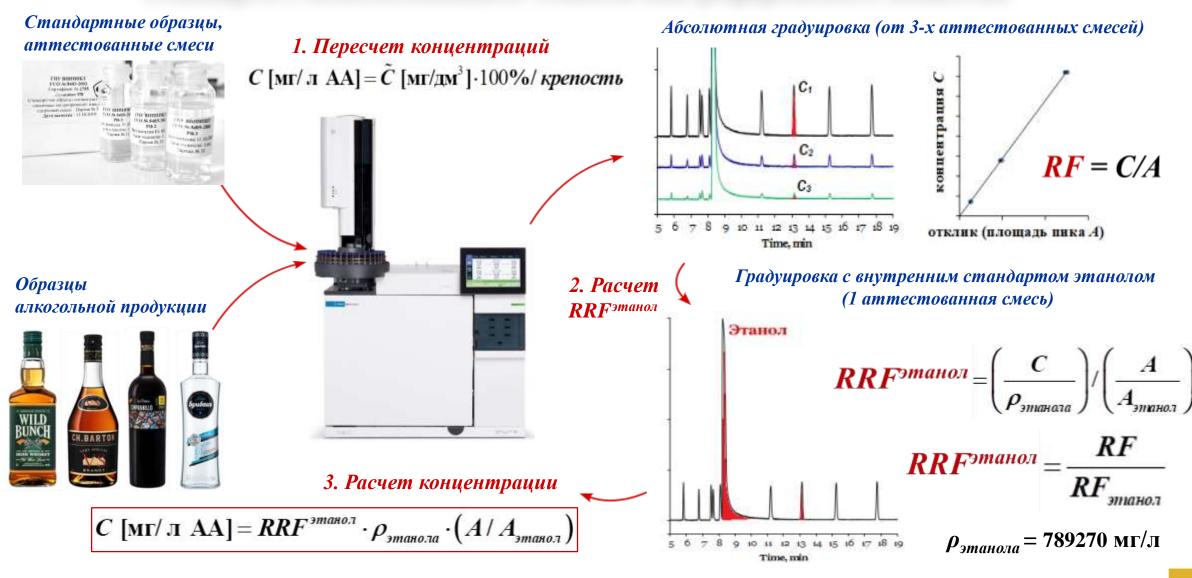
Краткий алгоритм перехода от метода внешнего стандарта к методу внутреннего стандарта с использованием этанола как референсного вещества

1. Пересчет значений концентраций. Для работы по MMBC проводят пересчет аттестованных значений концентраций компонентов в CO (ГР) из размерности мг/дм³ или %об. в единицы измерения мг/л безводного этилового спирта (мг/л AA). При этом значения концентрации С рассчитывают с использованием значений крепости CO (ГР) по формуле:

$$C$$
 [мг/л AA] = \tilde{C} [мг/дм³]·100%/ крепость

Концентрация этанола в мг/л AA равна плотности этанола при 20 °C $\rho_{\text{этанола}} = 789300$ мг/л.

2. Определение факторов отклика RRF^{3mahon} . Полученные значения концентрации компонентов вносят в используемые в испытательной лаборатории таблицы для расчетов. Различия заключаются в том, что при работе по традиционным методам вносят значения концентрации компонентов в размерности мг/дм³ или %об., а при работе по MMBC – значения концентрации С в размерности мг/л AA. В результате рассчитываются значения факторов отклика RF компонентов и RF этанола.


Относительные факторы отклика *RRF* рассчитываются как отношение факторов отклика анализируемых компонентов и этанола либо с использованием *RF*, либо – отношений концентраций и площадей на основе измерений только 1 градуировочной смеси (PB-1):

$$RRF^{\circ manon} = \left(\frac{C}{\rho_{\circ manona}}\right) / \left(\frac{A}{A_{\circ manon}}\right)$$

3. Анализ продукции. Различия заключаются в том, что при работе по традиционным методам значения концентрации компонентов получают в размерности мг/дм3 или %об., определяют крепость продукта и затем пересчитывают концентрацию в размерность мг/л AA. Тогда как при работе по MMBC значения концентрации получают сразу в размерности мг/л AA, и нет необходимости определять крепость образца продукции.

$$C$$
 [мг/л AA] = $RRF^{\mathfrak{s}mahon} \cdot \rho_{\mathfrak{s}mahona} \cdot (A/A_{\mathfrak{s}mahon})$

Переход от метода внешнего стандарт к методу внутреннего стандарта с использованием этанола как референсного вещества

Сравнение показателей повторяемости (ОСКО, s_r ,%)

Наименов ание летучего компонен -та	Диапазон измерени й концентр ации, мг/дм ³ б.с. (приблиз и-тельно)	FOCT 30536–2013	CTB FOCT P 51698– 2001	FOCT 32039–2013	FOCT 31684— 2012	FOCT 33834–2016	FOCT P 57893–2017	TOCT P 51999– 2002	FOCT P 55878– 2013	FOCT 33408–2015	FOCT 34675–2020	FOCT 33833–2016	
		1	2	3	4	5	6	7	8	9	10	11	14
Ацет-	2-12	5	-	5	5	6,5	6	не указано	7,5	-	-	_	3,5
альдегид	12-5000	-	4	-	4	4	4	не указано	4	не указано	5-3	_	2,5
Метил-	2-12	5	-	5	-	-	-	-	7,5		-	_	5,0
ацетат	12-5000	-	4	-	-	-	-	_	4	не указано	-	_	2,5
Этил-	2-12	5	-	5	5	7,5	6,5	не указано	7,5	-	-	_	5,0
ацетат	12-5000	-	4	-	4	5	4,5	не указано	4	не указано	7-5	_	2,5
	от 10 до 20-25 (0,0001%- 0,001%)	7	7	7	8	6	5,5	не указано	-	не указано	-	-	2,0
Метанол	от 25 до 200) (0,001%- 0,01%)	5	5	5	7	4,5	4,5	не указано	5,7	не указано	7	9-7	1,5
	от 200 до 5000 (0,01%- 0,1%)	4	4	4	7	4,5	-	-	3,1	не указано	7-5	7	1,5
Пропан-	4-12	5	5	5	5	7	7	не указано	7,5	не указано	-	_	3,5
2-ол	12-5000	-	4	-	4	4,5	5	не указано	4	не указано	-	_	2,0
Пропан-	2-12	5	-	5	5	7,5	5	не указано	7,5	-	-	_	5,0
1-ол	12-5160	-	4	-	4	4,5	3	не указано	4	не указано	4-3	_	2,5
Изо-	2-12	5	-	5	5	7	5	не указано	7,5	-	-	_	5,0
бутанол	12-5000	-	4	-	4	4	3,5	не указано	4	не указано	4-3	_	2,5
Бутан-	2-12	5	-	5	5	7	7	не указано	7,5	-	-	_	6,5
1-ол	12-5000	-	4	-	4	5,5	5	не указано	4	не указано	-	_	2,5
Изо- амилол	2-12	5	-	5	5	7,5	6	_	-	-	-	-	5,0

Сравнение показателей воспроизводимости $(s_{I(TO)}\%)$

	Наименов ание летучего компонен -та	Диапазон измерени й концентр ации, мг/дм ³ б.с. (приблиз и-тельно)	FOCT 30536–2013	CTB FOCT P 51698– 2001	FOCT 32039–2013	TOCT 31684– 2012	FOCT 33834–2016	FOCT P 57893–2017	FOCT P 51999– 2002	TOCT P 55878– 2013	FOCT 33408–2015	FOCT 34675–2020	FOCT 33833–2016	
			1	2	3	4	5	6	7	8	9	10	11	14
	Ацет-	5-12	7	-	7	7	10	9	не указано	не указано	-	-	_	4,0
	альдегид	12-5000	-	5	-	6	6	6	не указано	не указано	не указано	>	_	3,0
	Метил-	2-12	7	-	7	-	-	-	-	не указано		-	_	6,0
	ацетат	12-5000	-	5	-	-	-	-	-	не указано	не указано	-	_	3,0
	Этил-	2-12	7	-	7	7	11	10	не указано	не указано	-	-	_	6,0
	ацетат	12-5000	-	5	-	6	7,5	7	не указано	не указано	не указано	>	_	3,0
a a l		от 10 до 20-25 (0,0001%- 0,001%)	10	10	10	12	9	8	не указано	-	не указано	-	-	2,5
	Метанол	от 25 до 200) (0,001%- 0,01%)	6	6	6	10	7	7	не указано	не указано	не указано	>	14-11	2,0
		от 200 до 5000 (0,01%- 0,1%)	5	5	5	10	7	-	-	не указано	не указано	>	11	2,0
	Пропан-	4-12	7	7	7	7	10,5	12	не указано	не указано	не указано	-	_	4,0
	2-ол	12-5000	-	5	-	6	7	7,5	не указано	не указано	не указано	-	_	2,5
	Пропан-	2-12	7	-	7	7	11	7,5	не указано	не указано	-	-	_	6,0
	1-ол	12-5000	-	5	-	6	7	4,5	не указано	не указано	не указано	>	_	3,0
	Изо-	2-12	7	-	7	7	10,5	7,5	не указано	не указано	-	-	_	5,5
	бутанол	12-5000	-	5	-	6	6	5	не указано	не указано	не указано	>	_	3,0
ſ	Бутан-	2-12	7	-	7	7	10,5	10,5	не указано	не указано	-	-	_	7,0
	1-ол	12-5000	-	5	-	6	8	7,5	не указано	не указано	не указано	-	_	3,0
ſ	Изо-	2-12	7	-	7	7	11	9	-	-	-	-	_	5,5
	амилол	12-5200	-	5	-	6	7.5	7	_	_	не	>	_	3.0

Сравнение пределов повторяемости (*r*, %)

Наименов ание летучего компонен -та	Диапазон измерени й концентр ации, мг/дм ³ б.с. (приблиз и-тельно)	FOCT 30536–2013	CTB FOCT P 51698– 2001	FOCT 32039–2013	FOCT 31684– 2012	FOCT 33834–2016	FOCT P 57893–2017	FOCT P 51999– 2002	FOCT P 55878– 2013	FOCT 33408–2015	FOCT 34675–2020	FOCT 33833–2016	
		1	2	3	4	5	6	7	8	9	10	11	14
Ацет-	5-12	15	-	15	15	18	17	35##	19	-	-	_	10
альдегид	12-5000	-	10	-	10	11	11	20##	11	10,4	14-8	_	7
Метил-	2-12	15	-	15	-	-	-	-	19		-	_	14
ацетат	12-5000	-	10	-	-	-	-	-	11	7	-	_	7
Этил-	2-12	15	-	15	15	21	18	30##	19	-	-	_	14
ацетат	12-5000	-	10	-	10	14	12,5	15##	11	7	19-14	_	7
	от 10 до 20-25 (0,0001%- 0,001%)	20	20	20	22	17	15	10##	-	7	-	-	6
Метанол	от 25 до 200) (0,001%- 0,01%)	15	15	15	19	12,5	12,5	10##	15	7	19	25-19	4
	от 200 до 5000 (0,01%- 0,1%)	10	10	10	19	12,5	-	-	8	7	19-14	19	4
Пропан-	4-12	15	15	15	15	19	22	35##	19	15	-	_	10
2-ол	12-5000	-	10	-	10	12,5	14	20##	11	7	-	_	6
Пропан-	2-12	15	-	15	15	21	14	30##	19	-	-	_	14
1-ол	12-5000	-	10	-	10	12,5	8	15##	11	7	11-8	_	7
Изо-	2-12	15	-	15	15	19	14	30##	19	-	-	_	14
бутанол	12-5000	-	10	-	10	11	10	15##	11	7	11-8	_	7
Бутан-	2-12	15	-	15	15	19	19	30##	19	-	-	_	18
1-ол	12-5000	-	10	-	10	15	14	15##	11	7	-	_	7
Изо-	2-12	15	-	15	15	21	17	-	-	-	-	_	14
амилол	12-5200	-	10	-	10	14	12,5	-	-	7	11-8	_	7

^{## -} норматив для контроля сходимости

Сравнение показателей точности

(границ относительной погрешности, расширенной неопределенности U, %)

Наименов ание летучего компонен -та	Диапазон измерени й концентр ации, мг/дм ³ б.с. (приблиз и-тельно)	FOCT 30536–2013	CTB FOCT P 51698– 2001	FOCT 32039–2013	TOCT 31684— 2012	FOCT 33834–2016	TOCT P 57893–2017	FOCT P 51999– 2002	FOCT P 55878– 2013	FOCT 33408–2015	FOCT 34675–2020	FOCT 33833–2016	
		1	2	3	4	5	6	7	8	9	10	11	14
Ацет-	5-12	15	-	15	15	20	19	25	20	-	-	_	13
альдегид	12-5000	-	10	-	13	12	12	15	10	11,7	15-10	_	8,4
Метил-	2-12	15	-	15	-	_	_	_	18		-	_	16
ацетат	12-5000	-	10	-	-	_	_	_	10	11,7	-	_	8,3
Этил-	2-12	15	-	15	15	21	20	20	18	-	-	_	16
ацетат	12-5000	-	10	-	13	15	14	10	10	9,6	20-17	_	8,3
	от 10 до 20-25 (0,0001%- 0,001%)	20	20	20	25	19	17	15	-	10	-	-	10
Метанол	от 25 до 200) (0,001%- 0,01%)	15	15	15	21	14	14	15	15	9,6	20	28-22	7,4
	от 200 до 5000 (0,01%- 0,1%)	10	10	10	21	14	-	-	8	9,6	20-15	22	7,4
Пропан-	4-12	15	15	15	15	21	24	25	20	15	-	_	12
2-ол	12-5000	-	10		13	14	15	15	10	9,6	-	_	7,5
Пропан-	2-12	15	-	15	15	22	15	20	18	-	-	_	16
1-ол	12-5000	-	10	-	13	14	10	10	10	9,6	12-10	_	8,2
Изо-	2-12	15	-	15	15	21	15	20	18	-	-	_	15
бутанол	12-5000	ı	10	-	13	12	11	10	10	9,6	12-10	_	8,0
Бутан-	2-12	15	-	15	15	21	21	20	18	-	-	_	18
1-ол	12-5000	ı	10	-	13	16	15	10	10	9,6	-	_	8,0
Изо-	2-12	15	-	15	15	22	19	-	_	-	-	_	15
амилол	12-5200	ı	10	-	13	15	14	-	-	9,6	12-10	_	8,0