Протокол приготовления градуировочных растворов (ГР) летучих компонентов и расчёт значений их концентрации

в водно-этанольных смесях с применением файла-шаблона «StandSolutions_2025.xlsx»

Оглавление

Анно	тация2
Спис	ок сокращений и обозначений
Спра	вочные таблицы4
1. П	риготовление растворов, внесение в таблицы значений масс
1.1.	Подготовка ВСР5
1.2.	Приготовление ГР «А» (базового для «В», «С», «D», «1»)
1.3.	Приготовление ГР «В»
1.4.	Приготовление ГР «С» (базового для «2» и «3»)
1.5.	Приготовление ГР «D»11
1.6.	Приготовление ГР «1»
1.7.	Приготовление ГР «2»
1.8.	Приготовление ГР «3»
2. P	асчёты концентраций и RRF в первом и втором приближениях18
2.1. при	Расчёт массы и концентрации компонентов в градуировочном растворе «С» в нулевом ближении
2.2. и «	Расчёт градуировочного коэффициента RRF и концентраций компонентов в растворах BCP, «А» С» в первом приближении
2.3.	Расчёт концентраций компонентов в растворах ВСР, «А» и «С» во 2-м приближении19
Лис	ст «Концентрации на печать»

Аннотация

Градуировочные растворы (**ГР**) — смеси летучих соединений (i=1,...,9) в водно-этанольных растворах (ВСР — водно-спиртовой раствор, тоже, что и ВЭС — водно-этанольная смесь). Наборы ГР приготавливаются гравиметрическим (весовым) методом с применением аналитических весов и включают несколько уровней концентрации (j=1,...,7), в мг/дм³ безводного этанола (мг/л AA).

Назначение ГР. В модифицированном методе внутреннего стандарта (ММВС) для установления градуировочной (калибровочной) характеристики прибора используется один из ГР – раствор «С». Остальные ГР (растворы «А», «В», «D», «1», «2», «3») можно использовать для проверки линейности отклика детектора, контроля стабильности, оценки точности.

«Исходные», «базовые» реактивы и растворы. Для изготовления раствора «А» в качестве исходных применяются реактивы « $\mathbf{0}_i$ » (i=1,...,9): ацетальдегид (этаналь), метилацетат, этилацетат, метанол, спирт изопропиловый (2-пропанол), спирт пропиловый (1-пропанол), 2-метил-1-пропанол (изобутанол), спирт бутиловый (1-бутанол), 3-метил-1-бутанол (изоамилол) со значениями массового содержания основного вещества (компонента i) не менее 99,0 %, г/г. Для приготовления набора ГР используется ВСР с объемной долей этилового спирта ABV (40 ± 1) % об. Плотность ВСР ρ_{BCP} определяют согласно разделу 3 ГОСТ 3639 пикнометрическим методом.

Для изготовления растворов «В», «С», «D» и «1» в качестве «базового» применяется раствор «А», смешиваемый в разных количествах с чистым ВСР (без добавок). Для изготовления растворов «2» и «3» в качестве «базового» применяется раствор «С», смешиваемый в разных количествах с чистым ВСР. Ориентировочные значения объемов V и масс M, которые вносят при приготовлении СО, указаны в таблице 1. Следует подчеркнуть, что величины V и M являются лишь вспомогательными и используются для приблизительной оценки концентрации C.

Взвешивание (гравиметрический метод) и расчёт «аттестованных» значений. Для расчёта «аттестованных» значений концентраций компонентов в ΓP является необходимым точное определение значений масс вносимых в ΓP веществ (в Γ , с точностью до $0,001~\Gamma$) с применением аналитических весов. Именно на основании точных значений массы для каждого i-го летучего компонента m^i и BCP m^{BCP} в конкретном ΓP рассчитываются «аттестованные» значения концентрации C^i летучих соединений в мг/дм³ безводного этанола (мг/л AA).

Нулевое приближение. В нулевом приближении при расчётах полагают, что ВСР состоит только из воды и этанола, а токсичные примеси (i=1,...,9) отсутствуют и их доли $W^i_{0m}(BCP)=0$.

Первое и второе приближения – расчёты с учётом содержания примесей в ВСР.

«Аттестованные» значения концентрации используются для установления значений градуировочных (калибровочных) параметров $RRF_i^{\text{этпанол}}$ (относительный фактор отклика, RRF от англ. Relative Response Factor), представляющих собой относительные коэффициенты отклика ПИД газового хроматографа на каждый исследуемый i-й летучий компонент относительно отклика на внутренний стандарт (этанол, содержащийся в образце) в зависимости от отношения концентраций компонента и этанола. Также знание «аттестованных» значений C^i летучих соединений в ΓP «А», «В», «D», «1», «2», «3» необходимо для оценки линейности отклика детектора.

Список сокращений и обозначений

```
ГР – градуировочный раствор;
ВСР – водно-спиртовой раствор;
ММВС – модифицированный метод внутреннего стандарта;
AA – безводный этиловый спирт (от англ. Anhydrous Alcohol или Absolute Alcohol);
0пр – индекс, показывающий, что расчёт выполняется в нулевом приближении;
1пр – индекс, показывающий, что расчёт выполняется в 1-м приближении;
2пр – индекс, показывающий, что расчёт выполняется во 2-м приближении;
ABV – объемная доля этилового спирта (от англ. Alcohol by volume), в % об.;
C^{i} – концентрация компонента i в растворе (в мг/л AA);
Eth – тоже, что этанол, индекс у параметров, относящихся к этанолу;
i – индекс, показывающий номер летучего компонента (i = 1, ..., 9);
i – индекс, показывающий номер концентрационного уровня \Gamma P (i = 1, ..., 7);
k – индекс, показывающий номер повторного измерения раствора;
M – масса всего раствора (в г);
m^{BCP} — масса ВСР, внесённого при приготовлении раствора (в г);
m^{i} – масса компонента i, внесённого при приготовлении раствора (в \Gamma);
m^{Eth} — масса этанола, внесённого при приготовлении раствора (в г);
N – число повторных хроматографических измерений определенного раствора (N \ge 2);
RRF – относительный фактор отклика (от англ. Relative Response Factor);
RRF_i^{\it Eth} — тоже, что и RRF_i^{\it 9manon} . Это градуировочный коэффициент RRF для компонента i при
     использовании этанола в качестве внутреннего стандарта, безразмерная величина
     (характеристика линейной зависимости хроматографических данных при выборе осей:
     ось X — отношение площади пика i-го компонента к площади пика этанола на
     хроматограмме, ось Y — отношение концентрации i-го компонента к концентрации
     этанола, выраженных в мг/л АА), рассчитывается по методу наименьших квадратов;
W^{i} — массовая доля компонента i в растворе (\Gamma/\Gamma);
\rho_{Eth} — тоже, что и \rho_{2mahoлa}, значение концентрации этанола в растворе, выраженное в мг/л AA,
     равно значению плотности безводного этанола (789270 мг/л при температуре 20 °C).
```

Справочные таблицы

Таблица 1. Рекомендуемые объёмы (массы) реагентов, которые вносят при приготовлении ГР

j	Название раствора	Вносимый объём V' «базового» раствора компонента, см³ (мл) и соответствующее приблизительное значение массы M' (г)	Вносимый объём ВСР, см ³ (мл)	Уровень концентрации, мг/дм ³ АА (мг/л АА)	Назначение СО
1	A	$0,250$ мл 0_i (около $0,2$ г)	97,8 мл (92,5 г)	4000-6000	контроль линейности
2	В	10 мл A (около 9,5 г)	90 мл (85,1 г)	400-600	контроль линейности
3	C	5 мл A (около 4,75 г)	95 мл (90 г)	240-300	градуировка
4	D	4 мл A (около 3,8 г)	96 мл (90 г)	180-240	контроль линейности, контроль стабильности
5	1	0,5 мл A (около 0,48 г)	99,5 мл (94 г)	25-40	контроль линейности
6	2	4 мл С (около 3,8 г)	96 мл (90 г)	10-25	контроль линейности
7	3	0,8 мл С (около 0,76 г)	99,1 мл (94 г)	2,0-5,0	контроль линейности
-	ВСР	водно-спиртовой раствор (водно	-этанольная смесь)	без добавок летучих	компонентов
_	0_{i}	исходные реагенты (ле	тучие вещества с чи	стотой не менее 99,	0%)

Таблица 2. Обозначения точных значений массы, установленных с помощью аналитических весов, и концентраций

Номер уровня концентрации ј	1	2	3	4	5	6	7
Наименование ГР	A	В	C	D	1	2	3
Точное значение массы «базового» раствора, внесённого в ГР, по итогам взвешивания, г	m_A^i	m_B^A	m_C^A	m_D^A	m_1^A	m_2^C	m_3^C
Точное значение массы ВСР, внесённого в СО, и всего ГР по	m_A^{BCP} ,	m_{B}^{BCP} ,	m_C^{BCP} ,	m_D^{BCP} ,	m_1^{BCP} ,	m_2^{BCP} ,	m_3^{BCP} ,
итогам взвешивания, г	M_A	M_B	M_C	M_D	M_1	M_2	M_3
Рассчитанное значение массы ВСР и этанола в ГР с учетом их содержания в «чистом» ВСР и в исходном растворе, г	$m^{Eth}(A)$	m ^{Eth} (B)	$m^{Eth}(\mathbb{C})$	$m^{Eth}(\mathrm{D})$	$m^{Eth}(1)$	$m^{Eth}(2)$	$m^{Eth}(3)$
Рассчитанное значение концентрации компонентов в ГР с учетом содержания в «чистом» ВСР и в исходном растворе, г	$m^{i}(A)$ $C^{i}(A)$	$m^i(B)$ $C^i(B)$	$m^{i}(C)$ $C^{i}(C)$	$m^{i}(D)$ $C^{i}(D)$	$m^{i}(1)$ $C^{i}(1)$	$m^{i}(2)$ $C^{i}(2)$	$m^{i}(3)$ $C^{i}(3)$

Таблица 3. Характеристики ВСР

Определение	Обозначение	Ед. измерения
Температура, при которой проводится определение плотности ВСР	t_0	°C
Плотность ВСР (от 0,778 до 0,99988)	$ ho_{BCP}$	г/см ³
Объемная доля этилового спирта в ВСР	ABV	% об.
Массовая доля этилового спирта в ВСР	$W_{BCP}^{\it Eth}$	г/г
Площадь пика <i>i</i> -го компонента на <i>k</i> -й хроматограмме	$A^{i}_{k}(BCP)$	ед.площади пика
Площадь пика этанола на k-й хроматограмме	$A^{Eth}_{k}(BCP)$	ед.площади пика

1. Приготовление растворов, внесение в таблицы значений масс

1.1. Подготовка ВСР

1.1.1. В шаблоне «StandSolutions_2025.xlsx» (лист «Расчёты») область параметров ВСР: ячейки строк 1-7 столбцов А-С.

4	А	В	С	D
1	подготовка	ВСР.	введите:	
2	Дата приготовлен	ння ВСР, д-ммм-гггг	•	по термометру,
3	Температура в ко	мнате, <i>t</i> ₀ , °С	•	om 8 ∂o 40 °C
4	Масса пикнометр	а, г		om 0.772 do
5	Плотность ВСР п	рн <i>t ₀</i> , г/см ³		0.99988
6	Крепость ВСР пр	н 20°C, <i>ABV</i> , % об.	#N/A	
7	Массовая доля эт	анола <i>W^{Eth} _{ВСР},</i> г/г	#N/A	

- 1.1.2. В ячейки С2 и С3, отмеченные заливкой, вносят значения: дату определения параметров ВСР и температуру t_0 (в °С), при которой измеряют плотность ВСР ρ_{BCP} .
- 1.1.3. Определяют плотность BCP ρ_{BCP} (в r/cm^3) согласно разделу 3 ГОСТ 3639 пикнометрическим методом и вносят полученное значение в ячейку C5.
- 1.1.4. С учётом введённых значений t_0 (в °C), ρ_{BCP} (в г/см³) и справочных данных водноэтанольных таблиц [1] в программе автоматически определяется значение «крепости» – объёмной доли этанола в ВСР ABV (в % об.). Результат появится в ячейке С6.
- 1.1.5. В ячейке С7 отобразится значение массовой доли этилового спирта в ВСР W^{Eth}_{BCP} (Γ/Γ), рассчитанное по формуле:

$$W_{BCP}^{Eth} = \frac{ABV\%}{100\%} \cdot \frac{\rho_{Eth}}{\rho_{BCP}}, \qquad (1.1.1)$$

где ρ_{Eth} – плотность безводного этилового спирта при 20 °C, г/см³, 0,78927 г/см³ [1].

1.1.6. Прописывают хроматограммы для BCP 2-3 раза (k = 1,2,3). Проводят разметку и интегрирование пиков на каждой k-ой хроматограмме и полученные значения площади пиков летучих компонентов $A^i{}_k(BCP)$ и этанола $A^{Eth}{}_k(BCP)$ вносят в ячейки столбцов M, N, O строк 25-34.

- 4	K	L	M	N	0
23			ВВЕДИТЕ значения пл	пощади пиков для ВСР:	
24	№в-ва, і	Компонент	$A^{i}{}_{I}$ (ВСР), мВ·мин	A^{i}_{2} (ВСР), мВ·мин	A^{i}_{β} (ВСР), мВ·мин
25	I	ацетальдегид			
26	2	метилацетат			
27	3	этилацетат			
28	4	метанол			
29	5	2-пропанол			
30	Eth	этанол			
31	6	1-пропанол			
32	7	нзобутанол			
33	8	бутанол			
34	9	изоамилол			

1.2. Приготовление ГР «А» (базового для «В», «С», «D», «1»)

1.2.1. В шаблоне «StandSolutions_2025.xlsx» (лист «Расчёты») область параметров ГР «А»: ячейки строк 1-7 столбцов Е-I, а также строки 1-25.

_4	E	F	G		Н	I I	J
1	СОЗДАНИЕ ГР "А			В	ВЕДИТЕ значения:		
2	Дата создания ГР "А	", д-ммм-гггг			>		
3	Температура в комн	те при приготовле	нии ГР "А", <i>t</i> холх, °С	c	→		
4	Масса пустой колбы	с крышкой, г			-]	
5	Масса колбы с крыш	кой со всеми веще	ствами, г		-	<u> 1-я порция</u>	<u>2-я порция</u>
6	Масса 1-й и 2-й порц	ий ВСР, <i>т^{ВСР}</i> _А , г			-		
7	Масса всего ГР "А",	M_A , r			0.000		

_4	Α	В	С	D	E	F	G	Н
8			введите:					введите:
9	ГР "А"		Чистота реагента " 0_i ", г/г	Вносимый объем (при 20°С), мл	Плотность вещества при 20°С, мг/л	Ожидаемая масса вещества, г	Ожидаемая концентрация вещества при 20°C, мг/л AA	Масса вещества при взвешивании при <i>t</i> _{хожх} , г
10		Компонент				$M^{ri} = \rho_i \cdot V^{ri} / 10^6$	$C_A^{ri} = (M_A^{ri} \cdot W_i^{i} / V_A^{rEth}) \cdot 10^6$	
11	№в-ва, і		W_i^i	$V^{i}_{\ A}(V^{Eth}_{\ A},V^{ECP}_{\ A}),$ мл	ρ _{i(Eth, BCP)} , MT/Л	$M'^{i}{}_{A}(M'^{E\hat{m}}{}_{A},M'^{ECP}{}_{A}), \Gamma$	$C^{ij}_{A}(C^{iEth}_{A,C^{iECP}_{A}}),$ мг/л AA	$m_A^i (m_{A,m}^{E\hat{m}} m_A^{BCP})$, r
12	1	ацетальдегид	0.995	0.250	783400	0.1959	#N/A	
13	2	метилацетат	0.995	0.250	934200	0.2336	#N/A	
14	3	этилацетат	0.995	0.250	900300	0.2251	#N/A	
15	4	метанол	0.995	0.250	791800	0.1980	#N/A	
16	5	2-пропанол	0.995	0.250	785000	0.1963	#N/A	
17	Eth	этанол		#N/A	789270	#N/A	789270	#N/A
18	6	1-пропанол	0.995	0.250	803000	0.2008	#N/A	
19	7	изобутанол	0.995	0.250	801800	0.2005	#N/A	
20	8	бутанол	0.995	0.250	809800	0.2025	#N/A	
21	9	изоамилол	0.995	0.250	815200	0.2038	#N/A	

- 1.2.2. В ячейки H2 и H3, отмеченные заливкой, вносят значения: дату приготовления раствора «А» и температуру t_{KOMH} (в °C).
- 1.2.3. В ячейках C12-C16 и C18-C21, отмеченных заливкой, корректируют значения массовой доли W^i , (в г/г, $i=1,\ldots,9$) основных веществ (летучих компонентов) в исходных реагентах $\mathbf{0}_i$. Массовая доля W^i при содержании основного вещества по массе в процентах составит: при чистоте реагента 99,0% доля 0,99, при чистоте 99,5% доля 0,995, при чистоте 99,9% доля 0,999. По умолчанию в ячейках шаблона введены значения 0,995.
- 1.2.4. Мерную колбу вместимостью 100 см³ (мл) закрывают стеклянной крышкой, помещают на аналитические весы и взвешивают в точностью до 0,001 г. Значение массы вносят в ячейку H4. После этого выполняют тарирование.
- 1.2.5. Затем в колбу наливают около 40 мл BCP (1-я порция), закрывают колбу стеклянной крышкой и проводят взвешивание. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H6. После этого выполняют тарирование.
- 1.2.6. Затем с использованием дозатора в колбу с 1-й порцией ВСР добавляют 3-метилбутан-1-ол (изоамиловый спирт, изоамилол) в количестве 0,250 мл (0,2 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H21 (m^i_A , i=9). Наконечник дозатора меняют. Выполняют тарирование.

- 1.2.7. В колбу с помощью дозатора добавляют бутан-1-ол (н-бутиловый спирт, 1-бутанол) в количестве 0,250 мл (0,2 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H20 (m^i_A , i=8). Наконечник дозатора меняют. Выполняют тарирование.
- 1.2.8. В колбу с помощью дозатора наливают 2-метилпропан-1-ол (изобутиловый спирт, изобутанол) в количестве 0,250 мл (0,2 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H19 (m_A^i , i=7). Наконечник дозатора меняют. Выполняют тарирование.
- 1.2.9. В колбу с помощью дозатора наливают пропан-1-ол (н-пропиловый спирт, 1-пропанол) в количестве 0,250 мл (0,2 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H18 (m_A^i , i=6). Наконечник дозатора меняют. Выполняют тарирование.
- 1.2.10. В колбу с помощью дозатора добавляют пропан-2-ол (втор-пропиловый спирт, 2-пропанол) в количестве 0,250 мл (0,2 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H16 (m^i_A , i=5). Наконечник дозатора меняют. Выполняют тарирование.
- 1.2.11. В колбу с помощью дозатора наливают метиловый спирт (метанол) в количестве 0,250 мл (0,2 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H15 $(m^i{}_A, i = 4)$. Наконечник дозатора меняют. Выполняют тарирование.
- 1.2.12. В колбу с помощью дозатора добавляют этилэтаноат (этилацетат) в количестве 0,250 мл (0,2 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H14 $(m^i_A, i=3)$. Наконечник дозатора меняют. Выполняют тарирование.
- 1.2.13. В колбу с помощью дозатора наливают метилэтаноат (метилацетат), в количестве 0,250 мл (0,2 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H13 $(m^i_A, i=2)$. Наконечник дозатора меняют. Выполняют тарирование.
- 1.2.14. Последним в колбу добавляют самый летучий компонент этаналь (ацетальдегид) в количестве 0,250 мл (0,2 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку H12 $(m^i{}_A, i=1)$. Выполняют тарирование.
- 1.2.15. Далее, в колбу с 1-й порцией ВСР и всеми добавленными летучими компонентами (i=1, ..., 9) доливают 2-ю порцию ВСР (около 57,8 мл, до метки объема 100 мл). Закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку I6.
- 1.2.16. Колбу снимают с весов, значение массы на весах обнуляют. Колбу, содержащую весь приготовленный ΓP «А», закрытую крышкой, снова ставят на весы и взвешивают. Полученное точное значение массы ΓP «А» с тарой (в г, с точностью до 0,001 г) вносят в ячейку H5. В результате точное значение массы ΓP «А» без тары M_A вычислится автоматически и появится в ячейке H7.
- 1.2.17. Колбу с раствором ГР «А» выдерживают при температуре окружающей среды в течение 25 мин.

- 1.2.18. Значение всей массы ВСР, внесенного в раствор Γ Р «А», $m^{BCP}{}_A$ вычислится автоматически путем сложения и отобразится в ячейке H22.
- 1.2.19. В ячейке H17 отобразится значение массы этанола, внесенного в ΓP «А» (за счёт BCP), m^{Eth}_A , вычисленное автоматически по формуле:

$$m^{Eth}_{A} = m^{BCP}_{A} \cdot W^{Eth}_{BCP} \tag{1.2.1}$$

1.2.20. В ячейках I12-I21 будут автоматически рассчитаны значения масс летучих компонентов и этанола $m_{0\text{пр}}^i(A)$ (с учётом их содержания в исходных реактивах) и в ячейках J12-J21 — их массовые доли $W_{0\text{пр}}^i(A)$ в растворе Γ P «А» в нулевом приближении по формулам:

$$m_{0\text{np}}^i(\mathbf{A}) = W_i^i \cdot m_A^i \tag{1.2.3}$$

$$W_{0\text{np}}^{i}(\mathbf{A}) = \frac{m_{0\text{np}}^{i}(\mathbf{A})}{M_{A}}$$
 (1.2.4)

1.3. Приготовление ГР «В»

1.3.1. В шаблоне «StandSolutions_2025.xlsx» (лист «Расчёты») область параметров ГР «В»: строки 126-150.

1	Α	В	С	D	Е	F
126	СОЗДАНИЕ ГР	"В" на основе ГР "А".	ВВЕДИТЕ	:		
127	Дата создания ГР	"В", д-ммм-гггг		→		
128	Масса пустой кол	бы с крышкой, г		→		
129	Объём ВСР в ГР	"В" (вносимый дозатором)	, мл	90.0	I-я порция	2-я порция
130	Объёмы 1-й и 2-й	і порций ВСР, мл				
131	Массы 1-й и 2-й п	орций ВСР, <i>m</i> ^{ВСР} _В , г		→	>	0.000
132	Объём ГР "А" в 1	ГР "В" (вносимый дозатор	ом), <i>V^AB</i> , мл	10.0		
133	Масса ГР "А" в Г	Р "В", т ^а в, г		→		
134	Масса ГР "В", М	_В , г		0.000		
135	Масса колбы с кр	ышкой со всеми веществам	гн, г			

- 1.3.2. В ячейку D127, отмеченную заливкой, вносят дату изготовления ГР «В».
- 1.3.3. Мерную колбу вместимостью 100 см^3 (мл) закрывают стеклянной крышкой, помещают на аналитические весы и взвешивают в точностью до 0,001 г. Значение массы вносят в ячейку D128.
- 1.3.4. Выполняют тарирование. Затем в колбу наливают около 45 мл ВСР (1-я порция), закрывают колбу стеклянной крышкой и проводят взвешивание. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку D131.
- 1.3.5. Выполняют тарирование колбы с 1-й порцией ВСР. Затем с использованием дозатора в колбу добавляют «базовый» раствор ГР «А» в количестве 10 мл (около 9,5 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку D133 (m^A_B).

- 1.3.6. Выполняют тарирование колбы с 1-й порцией ВСР и добавленным «базовым» раствором. Далее, в колбу доливают 2-ю порцию ВСР (около 45 мл, до метки объема 100 мл). Закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку E131.
- 1.3.7. Колбу снимают с весов, значение массы на весах обнуляют. Колбу, содержащую весь приготовленный ГР «В», закрытую крышкой, снова ставят на весы и взвешивают. Полученное точное значение массы ГР «В» с тарой (в г, с точностью до $0.001 \, \mathrm{r}$) вносят в ячейку D135. В результате точное значение массы ГР «В» без тары M_B вычислится автоматически и появится в ячейке D134.
- 1.3.8. Значение всей массы «чистого» ВСР, внесенного в раствор ГР «В», $m^{BCP}{}_{B}$ вычислится автоматически путем сложения и отобразится в ячейке F131.
- 1.3.9. Колбу выдерживают при температуре окружающей среды в течение 25 мин.

1.3.10. В ГР «В» будет присутствовать ВСР, добавленный как «чистый» ВСР, а также добавленный при внесении «базового» раствора ГР «А». Общее количество ВСР в составе ГР «В» $m^{BCP}(B)$ (в г) отобразится в ячейке G149, автоматически вычисленное в программе по формуле:

$$m^{BCP}(B) = m_B^A \cdot W^{BCP}(A) + m_B^{BCP}$$
 (1.3.1)

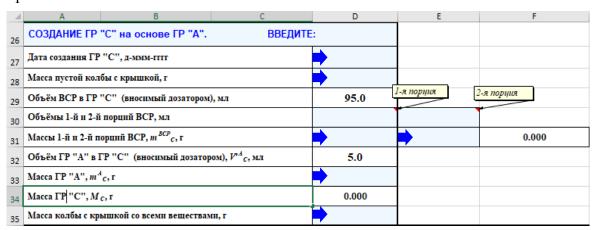
1.3.11. В ячейке G144 отобразится значение массы этанола, внесенного в ΓP «В» (суммарно: за счёт ВСР и «базового» раствора ΓP «А»), $m^{Eth}(B)$ (в г), вычисленное автоматически по формуле:

$$m^{Eth}(\mathbf{B}) = m^{BCP}(\mathbf{B}) \cdot W_{BCP}^{Eth} \tag{1.3.2}$$

1.3.12. В ячейках G139-G143 и G145-G148 появятся значения масс летучих компонентов, внесенных в ГР «В» (суммарно: за счёт ВСР и «базового» раствора ГР «А»), $m^i(B)$ (в г), вычисленные автоматически по формуле для $i=1,\ldots,9$:

$$m^{i}(B)=m_{B}^{A}\cdot W_{2np}^{i}(A)+m_{B}^{BCP}\cdot W_{2np}^{i}(BCP)$$
 (1.3.3)

1.3.13. В ячейке J144 отобразится точное значение объёма этанола в ΓP «В» (суммарно: за счёт ВСР и «базового» раствора ΓP «А»), $V^{Eth}(B)$ (в мл), вычисленное по формуле:

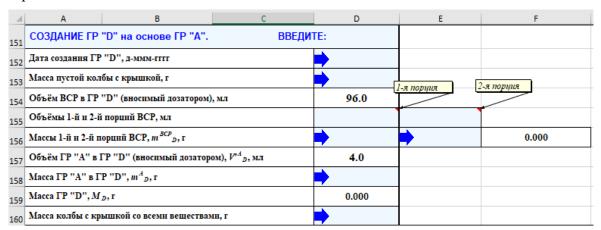

$$V^{Eth}(\mathbf{B}) = \frac{m^{Eth}(\mathbf{B})}{\rho_{Eth}} \cdot 10^6 \tag{1.3.4}$$

1.3.14. В ячейках I 139-I 143 и I 145-I 148 отобразятся «аттестованные» значения концентраций летучих компонентов в ГР «В», установленные с применением весового (гравиметрического) метода $C^i(B)$ (в мг/л AA), вычисленные в программе автоматически по формуле для $i=1,\ldots,9$:

$$C^{i}(B) = \frac{m^{i}(B)}{V^{Eth}(B)} \cdot 10^{6}$$
 (1.3.5)

1.4. Приготовление ГР «С» (базового для «2» и «3»)

1.4.1. В шаблоне «StandSolutions_2025.xlsx» (лист «Расчёты») область параметров Γ P «С»: строки 26-50.


- 1.4.2. В ячейку D27, отмеченную заливкой, вносят дату изготовления ГР «С».
- 1.4.3. Мерную колбу вместимостью 100 см³ (мл) закрывают стеклянной крышкой, помещают на аналитические весы и взвешивают в точностью до 0,001 г. Значение массы колбы вносят в ячейку D28.
- 1.4.4. Выполняют тарирование. Затем в колбу наливают около 45 мл ВСР (1-я порция), закрывают колбу стеклянной крышкой и проводят взвешивание. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку D31.
- 1.4.5. Выполняют тарирование колбы с 1-й порцией ВСР. Затем с использованием дозатора в колбу с 1-й порцией ВСР добавляют «базовый» раствор ГР «А» в количестве 5 мл (около 4,75 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку D33 (m^A_C).
- 1.4.6. Выполняют тарирование колбы с 1-й порцией ВСР и добавленным «базовым» раствором. Далее, в колбу доливают 2-ю порцию ВСР (около 50 мл, до метки объема 100 мл). Закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку Е31.
- 1.4.7. Колбу снимают с весов, значение массы на весах обнуляют. Колбу, содержащую весь приготовленный ГР «С», закрытую крышкой, снова ставят на весы и взвешивают. Полученное точное значение массы ГР «С» с тарой (в г, с точностью до 0,001 г) вносят в ячейку D35. В результате точное значение массы ГР «С» без тары M_C вычислится автоматически и появится в ячейке D34.
- 1.4.8. Значение всей массы «чистого» ВСР, внесенного в раствор ГР «С», m^{BCP}_{C} вычислится автоматически путем сложения и отобразится в ячейке F31.
- 1.4.9. Колбу выдерживают при температуре окружающей среды в течение 25 мин.
- 1.4.10. Далее, прописывают хроматограммы для раствора ΓP «C» 2-3 раза (k=1,2,3). Проводят разметку и интегрирование пиков на каждой k-ой хроматограмме и полученные значения площади пиков летучих компонентов $A^i{}_k(C)$ и этанола $A^{Eth}{}_k(C)$ вносят в ячейки столбцов P, Q, R строк 25-34.

	K	L	P	Q	R
23			ВВЕДИТЕ значения п.	лощади пиков для обра	зца С:
24	№в-ва, і	Компонент	$A^{i}{}_{I}(C)$, м B ·мин	$A^{i}{}_{I}$ (С), м \mathbf{B} -мин	$A^{i}{}_{I}$ (С), м \mathbf{B} ·мин
25	1	ацетальдегид			
26	2	метилацетат			
27	3	этилацетат			
28	4	метанол			
29	5	2-пропанол			
30	Eth	этанол			
31	6	1-пропанол			
32	7	изобутанол			
33	8	бутанол			
34	9	изоамилол			

1.4.11. В ячейках I 39-I 43 и I 45-I 48 отобразятся «аттестованные» значения концентраций летучих компонентов в ГР «С», установленные с применением весового (гравиметрического) метода $C^i(C)$ (в мг/л AA), вычисленные в программе автоматически (описание расчётов — в п.2).

1.5. Приготовление ГР «D»

1.5.1. В шаблоне «StandSolutions_2025.xlsx» (лист «Расчёты») область параметров ГР «D»: строки 151-175.

- 1.5.2. В ячейку D152, отмеченную заливкой, вносят дату изготовления ГР «D».
- 1.5.3. Мерную колбу вместимостью 100 см³ (мл) закрывают стеклянной крышкой, помещают на аналитические весы и взвешивают в точностью до 0,001 г. Значение массы колбы вносят в ячейку D153.
- 1.5.4. Выполняют тарирование. Затем в колбу наливают около 46 мл ВСР (1-я порция), закрывают колбу стеклянной крышкой и проводят взвешивание. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку D156.
- 1.5.5. Выполняют тарирование колбы с 1-й порцией ВСР. Затем с использованием дозатора в колбу с 1-й порцией ВСР добавляют «базовый» раствор ГР «А» в количестве 4 мл (около 3,8 г), закрывают колбу крышкой, перемешивают и

взвешивают. Полученное точное значение массы (в г, с точностью до $0{,}001$ г) вносят в ячейку D158 (m^A_D).

- 1.5.6. Выполняют тарирование колбы с 1-й порцией ВСР и добавленным «базовым» раствором. Далее, в колбу доливают 2-ю порцию ВСР (около 50 мл, до метки объема 100 мл). Закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку E156.
- 1.5.7. Колбу снимают с весов, значение массы на весах обнуляют. Колбу, содержащую весь приготовленный ГР «D», закрытую крышкой, снова ставят на весы и взвешивают. Полученное точное значение массы ГР «D» с тарой (в г, с точностью до 0,001 г) вносят в ячейку D160. В результате точное значение массы ГР «D» без тары M_D вычислится автоматически и появится в ячейке D159.
- 1.5.8. Значение всей массы «чистого» ВСР, внесенного в раствор ГР «D», m^{BCP}_D вычислится автоматически путем сложения и отобразится в ячейке F156.
- 1.5.9. Колбу выдерживают при температуре окружающей среды в течение 25 мин.

1.5.10. В ГР «D» будет присутствовать ВСР, добавленный как «чистый» ВСР, а также добавленный при внесении «базового» раствора ГР «A». Общее количество ВСР в составе ГР «D» $m^{BCP}(D)$ (в г) отобразится в ячейке G174, автоматически вычисленное в программе по формуле:

$$m^{BCP}(D) = m^A_D \cdot W^{BCP}(A) + m^{BCP}_D$$
 (1.5.1)

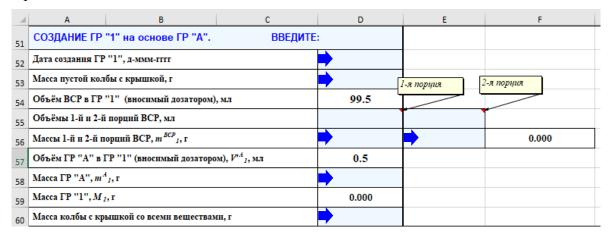
1.5.11. В ячейке G169 отобразится значение массы этанола, внесенного в ΓP «D» (суммарно: за счёт BCP и «базового» раствора ΓP «А»), $m^{Eth}(D)$ (в Γ), вычисленное автоматически по формуле:

$$m^{Eth}(\mathbf{D}) = m^{BCP}(\mathbf{D}) \cdot W_{BCP}^{Eth}$$
 (1.5.2)

1.5.12. В ячейках G164-G168 и G170-G173 появятся значения масс летучих компонентов, внесенных в ГР «D» (суммарно: за счёт ВСР и «базового» раствора ГР «A»), $m^i(D)$ (в г), вычисленные автоматически по формуле для i = 1, ..., 9:

$$m^{i}(D) = m_{D}^{A} \cdot W_{2m}^{i}(A) + m_{D}^{BCP} \cdot W_{2m}^{i}(BCP)$$
 (1.5.3)

1.5.13. В ячейке J169 отобразится точное значение объёма этанола в ΓP «D» (суммарно: за счёт ВСР и «базового» раствора ΓP «А»), $V^{Eth}(D)$ (в мл), вычисленное по формуле:


$$V^{Eth}(D) = \frac{m^{Eth}(D)}{\rho_{Eth}} \cdot 10^{6}$$
 (1.5.4)

1.5.14. В ячейках I 164-I 168 и I 170-I 173 отобразятся «аттестованные» значения концентраций летучих компонентов в ГР «D», установленные с применением весового (гравиметрического) метода $C^i(D)$ (в мг/л AA), вычисленные в программе автоматически по формуле для $i=1,\ldots,9$:

$$C^{i}(D) = \frac{m^{i}(D)}{V^{Eth}(D)} \cdot 10^{6}$$
 (1.5.5)

1.6. Приготовление ГР «1»

1.6.1. В шаблоне «StandSolutions_2025.xlsx» (лист «Расчёты») область параметров ГР «1»: строки 51-75.

- 1.6.2. В ячейку D52, отмеченную заливкой, вносят дату изготовления ГР «1».
- 1.6.3. Мерную колбу вместимостью 100 см^3 (мл) закрывают стеклянной крышкой, помещают на аналитические весы и взвешивают в точностью до 0,001 г. Значение массы вносят в ячейку D53.
- 1.6.4. Выполняют тарирование. Затем в колбу наливают около 40 мл ВСР (1-я порция), закрывают колбу стеклянной крышкой и проводят взвешивание. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку D56.
- 1.6.5. Выполняют тарирование колбы с 1-й порцией ВСР. Затем с использованием дозатора в колбу добавляют «базовый» раствор ГР «А» в количестве 0,5 мл (около 0,48 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку $D58 \ (m^A_I)$.
- 1.6.6. Выполняют тарирование колбы с 1-й порцией ВСР и добавленным «базовым» раствором. Далее, в колбу доливают 2-ю порцию ВСР (около 59,5 мл, до метки объема 100 мл). Закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку E56.
- 1.6.7. Колбу снимают с весов, значение массы на весах обнуляют. Колбу, содержащую весь приготовленный ГР «1», закрытую крышкой, снова ставят на весы и взвешивают. Полученное точное значение массы ГР «1» с тарой (в г, с точностью до 0,001 г) вносят в ячейку D60. В результате точное значение массы ГР «1» без тары M_1 вычислится автоматически и появится в ячейке D59.
- 1.6.8. Значение всей массы «чистого» ВСР, внесенного в раствор ГР «1», m^{BCP}_{I} вычислится автоматически путем сложения и отобразится в ячейке F56.
- 1.6.9. Колбу выдерживают при температуре окружающей среды в течение 25 мин.

1.6.10. В ГР «1» будет присутствовать ВСР, добавленный как «чистый» ВСР, а также добавленный при внесении «базового» раствора ГР «А». Общее количество ВСР в составе ГР «1» $m^{BCP}(1)$ (в г) отобразится в ячейке G74, автоматически вычисленное в программе по формуле:

$$m^{BCP}(1) = m^A_{I} \cdot W^{BCP}(A) + m^{BCP}_{I}$$
 (1.6.1)

1.6.11. В ячейке G69 отобразится значение массы этанола, внесенного в ΓP «1» (суммарно: за счёт ВСР и «базового» раствора ΓP «А»), $m^{Eth}(1)$ (в Γ), вычисленное автоматически по формуле:

$$m^{Eth}(1) = m^{BCP}(1) \cdot W_{BCP}^{Eth}$$
 (1.6.2)

1.6.12. В ячейках G64-G68 и G70-G73 появятся значения масс летучих компонентов, внесенных в ГР «1» (суммарно: за счёт ВСР и «базового» раствора ГР «А»), $m^i(1)$ (в г), вычисленные автоматически по формуле для $i=1,\ldots,9$:

$$m^{i}(1)=m_{I}^{A}\cdot W_{2mp}^{i}(A)+m_{I}^{BCP}\cdot W_{2mp}^{i}(BCP)$$
 (1.6.3)

1.6.13. В ячейке $^{\text{J}69}$ отобразится точное значение объёма этанола в $^{\text{FP}}$ «1» (суммарно: за счёт ВСР и «базового» раствора $^{\text{FP}}$ «А»), $^{\text{Eth}}$ (1) (в мл), вычисленное по формуле:

$$V^{Eth}(1) = \frac{m^{Eth}(1)}{\rho_{Eth}} \cdot 10^6 \tag{1.6.4}$$

1.6.14. В ячейках I 64-I 68 и I 70-I 73 отобразятся «аттестованные» значения концентраций летучих компонентов в ГР «1», установленные с применением весового (гравиметрического) метода $C^i(1)$ (в мг/л AA), вычисленные в программе автоматически по формуле для i = 1, ..., 9:

$$C^{i}(1) = \frac{m^{i}(1)}{V^{Eth}(1)} \cdot 10^{6}$$
(1.6.5)

1.7. Приготовление ГР «2»

1.7.1. В шаблоне «StandSolutions_2025.xlsx» (лист «Расчёты») область параметров ГР «2»: строки 76-100.

	Α	В	С	D	E	F
76	СОЗДАНИЕ ГР	"2" на основе ГР "С".	введите	:		
77	Дата создания ГР	"2", д-ммм-гггг		→		
78	Масса пустой кол	бы с крышкой, г			1-я порция	2-я порция
79	Объём ВСР в ГР	"2" (вносимый дозатором)	, мл	96.0	1-я порция	2-я порция
80	Объёмы 1-й и 2-й	і порций ВСР, мл				
81	Массы 1-й н 2-й п	юрций ВСР, m ^{ВСР} 2, г		→	→	0.000
82	Объём ГР "С" в	ГР "2" (вносимый дозаторо	ом), <i>V^C</i> 2, мл	4.0		
83	Масса ГР "С", т	с ₂ , г		→		
84	Масса ГР "2", <i>M</i>	2, Γ		0.000		
85	Масса колбы с кр	ышкой со всеми веществам	гн, г	•		

- 1.7.2. В ячейку D77, отмеченную заливкой, вносят дату изготовления ГР «2».
- 1.7.3. Мерную колбу вместимостью 100 см³ (мл) закрывают стеклянной крышкой, помещают на аналитические весы и взвешивают в точностью до 0,001 г. Значение массы вносят в ячейку D78.

- 1.7.4. Выполняют тарирование. Затем в колбу наливают около 40 мл ВСР (1-я порция), закрывают колбу стеклянной крышкой и проводят взвешивание. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку D81.
- 1.7.5. Выполняют тарирование колбы с 1-й порцией ВСР. Затем с использованием дозатора в колбу добавляют «базовый» раствор ГР «С» в количестве 4 мл (около 3,8 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку $D83 \ (m^{C}_{2})$.
- 1.7.6. Выполняют тарирование колбы с 1-й порцией ВСР и добавленным «базовым» раствором. Далее, в колбу доливают 2-ю порцию ВСР (около 56 мл, до метки объема 100 мл). Закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку E81.
- 1.7.7. Колбу снимают с весов, значение массы на весах обнуляют. Колбу, содержащую весь приготовленный ГР «2», закрытую крышкой, снова ставят на весы и взвешивают. Полученное точное значение массы ГР «2» с тарой (в г, с точностью до 0,001 г) вносят в ячейку D85. В результате точное значение массы ГР «2» без тары M₂ вычислится автоматически и появится в ячейке D84.
- 1.7.8. Значение всей массы «чистого» ВСР, внесенного в раствор ГР «2», m^{BCP}_2 вычислится автоматически путем сложения и отобразится в ячейке F81.
- 1.7.9. Колбу выдерживают при температуре окружающей среды в течение 25 мин.

1.7.10. В ГР «2» будет присутствовать ВСР, добавленный как «чистый» ВСР, а также добавленный при внесении «базового» раствора ГР «С». Общее количество ВСР в составе ГР «2» $m^{BCP}(2)$ (в г) отобразится в ячейке G99, автоматически вычисленное в программе по формуле:

$$m^{BCP}(2) = m^{C}_{2} \cdot W^{BCP}_{2\pi p}(C) + m^{BCP}_{2}$$
 (1.7.1)

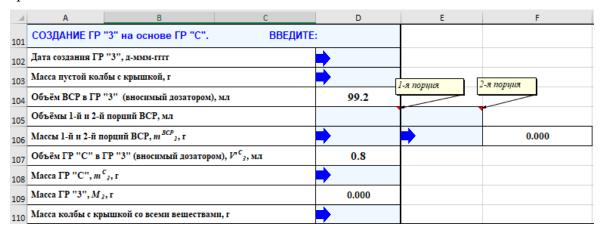
1.7.11. В ячейке G94 отобразится значение массы этанола, внесенного в ΓP «2» (суммарно: за счёт ВСР и «базового» раствора ΓP «С»), $m^{Eth}(2)$ (в г), вычисленное по формуле:

$$m^{Eth}(2) = m^{BCP}(2) \cdot W_{BCP}^{Eth}$$
 (1.7.2)

1.7.12. В ячейках G89-G93 и G95-G98 появятся значения масс летучих компонентов, внесенных в ГР «2» (суммарно: за счёт ВСР и «базового» раствора ГР «С»), $m^i(2)$ (в г), вычисленные автоматически по формуле для $i=1,\ldots,9$:

$$m^{i}(2)=m^{C}_{2}\cdot W_{2np}^{i}(C)+m^{BCP}_{2}\cdot W_{2np}^{i}(BCP)$$
 (1.7.3)

1.7.13. В ячейке J94 отобразится точное значение объёма этанола в $\Gamma P \ll 2$ » (суммарно: за счёт ВСР и «базового» раствора $\Gamma P \ll C$ »), $V^{Eth}(2)$ (в мл), вычисленное по формуле:


$$V^{Eth}(2) = \frac{m^{Eth}(2)}{\rho_{Eth}} \cdot 10^6 \tag{1.7.4}$$

1.7.14. В ячейках I 89-I 93 и I 95-I 98 отобразятся «аттестованные» значения концентраций летучих компонентов в ГР «2», установленные с применением весового (гравиметрического) метода $C^{i}(2)$ (в мг/л AA), вычисленные в программе автоматически по формуле для i = 1, ..., 9:

$$C^{i}(2) = \frac{m^{i}(2)}{V^{Eth}(2)} \cdot 10^{6}$$
(1.7.5)

1.8. Приготовление ГР «3»

1.8.1. В шаблоне «StandSolutions_2025.xlsx» (лист «Расчёты») область параметров ГР «3»: строки 101-125.

- 1.8.2. В ячейку D102, отмеченную заливкой, вносят дату изготовления ГР «3».
- 1.8.3. Мерную колбу вместимостью 100 см^3 (мл) закрывают стеклянной крышкой, помещают на аналитические весы и взвешивают в точностью до 0,001 г. Значение массы вносят в ячейку D103.
- 1.8.4. Выполняют тарирование. Затем в колбу наливают около 40 мл ВСР (1-я порция), закрывают колбу стеклянной крышкой и проводят взвешивание. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку D106.
- 1.8.5. Выполняют тарирование колбы с 1-й порцией ВСР. Затем с использованием дозатора в колбу добавляют «базовый» раствор ГР «С» в количестве 0,8 мл (около 0,76 г), закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку $D108 \, (m^C_3)$.
- 1.8.6. Выполняют тарирование колбы с 1-й порцией ВСР и добавленным «базовым» раствором. Далее, в колбу доливают 2-ю порцию ВСР (около 59,2 мл, до метки объема 100 мл). Закрывают колбу крышкой, перемешивают и взвешивают. Полученное точное значение массы (в г, с точностью до 0,001 г) вносят в ячейку E106.
- 1.8.7. Колбу снимают с весов, значение массы на весах обнуляют. Колбу, содержащую весь приготовленный ГР «3», закрытую крышкой, снова ставят на весы и взвешивают. Полученное точное значение массы ГР «3» с тарой (в г, с точностью до 0,001 г) вносят в ячейку D110. В результате точное значение массы ГР «3» без тары M_B вычислится автоматически и появится в ячейке D109.
- 1.8.8. Значение всей массы «чистого» ВСР, внесенного в раствор ГР «3», m^{BCP}_3 вычислится автоматически путем сложения и отобразится в ячейке F106.
- 1.8.9. Колбу выдерживают при температуре окружающей среды в течение 25 мин.

1.8.10. В ГР «З» будет присутствовать ВСР, добавленный как «чистый» ВСР, а также добавленный при внесении «базового» раствора ГР «С». Общее количество ВСР в составе ГР «З» $m^{BCP}(3)$ (в г) отобразится в ячейке G124, автоматически вычисленное в программе по формуле:

$$m^{BCP}(3) = m^{C}_{3} \cdot W^{BCP}_{2mp}(C) + m^{BCP}_{3}$$
 (1.8.1)

1.8.11. В ячейке G119 отобразится значение массы этанола, внесенного в ΓP «З» (суммарно: за счёт ВСР и «базового» раствора ΓP «С»), m^{Eth} (3) (в г), вычисленное автоматически по формуле:

$$m^{Eth}(3) = m^{BCP}(3) \cdot W_{BCP}^{Eth}$$
 (1.8.2)

1.8.12. В ячейках G114-G118 и G120-G123 появятся значения масс летучих компонентов, внесенных в ГР «3» (суммарно: за счёт ВСР и «базового» раствора ГР «С»), $m^i(3)$ (в г), вычисленные автоматически по формуле для $i=1,\ldots,9$:

$$m^{i}(3)=m^{C}_{3}\cdot W_{2np}^{i}(C)+m^{BCP}_{3}\cdot W_{2np}^{i}(BCP)$$
 (1.8.3)

1.8.13. В ячейке J119 отобразится точное значение объёма этанола в ΓP «З» (суммарно: за счёт ВСР и «базового» раствора ΓP «С»), $V^{Eth}(3)$ (в мл), вычисленное по формуле:

$$V^{Eth}(3) = \frac{m^{Eth}(3)}{\rho_{Eth}} \cdot 10^6 \tag{1.8.4}$$

1.8.14. В ячейках I 114-I 118 и I 120-I 123 отобразятся «аттестованные» значения концентраций летучих компонентов в ΓP «3», установленные с применением весового (гравиметрического) метода $C^i(3)$ (в мг/л AA), вычисленные в программе автоматически по формуле для $i=1,\ldots,9$:

$$C^{i}(3) = \frac{m^{i}(3)}{V^{Eth}(3)} \cdot 10^{6}$$
 (1.8.5)

2. Расчёты концентраций и RRF в первом и втором приближениях

- 2.1. Расчёт массы и концентрации компонентов в градуировочном растворе «С» в нулевом приближении
 - 2.1.1. В ячейках L39-L43 и L45-L48 рассчитываются значения масс летучих компонентов, внесенных в ГР «С» за счёт «базового» раствора ГР «А», в 0-м приближении $m^i_{0np}(C)$ (в г) по формуле:

$$m_{0np}^{i}(C) = W_{0np}^{i}(A) \cdot m_{C}^{A}$$
 (2.1.1)

2.1.2. В ячейке L44 рассчитывается значение массы этанола, внесенного в ΓP «С» суммарно за счёт ВСР и «базового» раствора ΓP «А», $m^{Eth}(C)$ (в Γ) по формуле:

$$m^{Eth}(\mathbf{C}) = m_C^A \cdot W^{Eth}(\mathbf{A}) + m_C^{BCP} \cdot W^{Eth}(\mathbf{BCP})$$
 (2.1.2)

2.1.3. В ячейках N39-N43 и N45-N48 рассчитываются значения концентраций летучих компонентов в ГР «С» в 0-м приближении $C^{i}_{0np}(C)$ (в мг/л AA) по формуле:

$$C_{0np}^{i}(\mathbf{C}) = \frac{m_{0np}^{i}(\mathbf{C})}{m^{Eth}(\mathbf{C})} \cdot \rho_{Eth}$$
(2.1.3)

2.1.4. В ячейках M39-M48 рассчитываются значения массовой доли летучих компонентов и этанола в ΓP «С» в 0-м приближении $W^i_{0 \text{пр}}(C)$ и $W^{Eth}(C)$ (Γ / Γ) по формулам:

$$W_{0np}^{i}(C) = \frac{m_{0np}^{i}(C)}{M_{C}};$$
 $W^{Eth}(C) = \frac{m^{Eth}(C)}{M_{C}}$ (2.1.4)

- 2.2. Расчёт градуировочного коэффициента RRF и концентраций компонентов в растворах BCP, «А» и «С» в первом приближении
 - 2.2.1. В ячейках O39-O48 рассчитываются значения градуировочных коэффициентов в 0-м приближении $RRF^{Eth}{}_{i\,0\,\text{пр}}$ по формуле:

$$RRF_{i,0\text{np}}^{Eth} = \frac{C_{0\text{np}}^{i}(C)}{\rho_{Eth}} \cdot \frac{\sum_{k=1}^{N} \left(A_{k}^{i}(C) / A_{k}^{Eth}(C) \right)}{\sum_{k=1}^{N} \left(A_{k}^{i}(C) / A_{k}^{Eth}(C) \right)^{2}}$$
(2.2.1)

2.2.2. В ячейках M12-M21 рассчитываются значения концентраций компонентов в ВСР в 1-м приближении $C^i_{1 \text{пр}}$ (ВСР) (в мг/л АА) по формуле:

$$C_{\text{lmp}}^{i}(\text{BCP}) = RRF_{i,0\text{mp}}^{Eth} \cdot \rho_{Eth} \cdot \frac{1}{N} \sum_{i=1}^{N} \left(A_{k}^{i}(\text{BCP}) / A_{k}^{Eth}(\text{BCP}) \right)$$
(2.2.2)

2.2.3. В ячейках K12-K21 рассчитываются значения массовой доли компонентов в ВСР в 1-м приближении $W^{i}_{1пр}$ (ВСР) (г/г AA) по формуле:

$$W_{\rm lnp}^{i}(BCP) = \frac{ABV\%}{100\%} \cdot \frac{C_{\rm lnp}^{i}(BCP)}{\rho_{pcp}}$$
(2.2.3)

2.2.4. В ячейках O12-O21 рассчитываются значения масс летучих компонентов и этанола $m^i_{1\text{пр}}(A)$ (в г) с учётом их содержания в исходных реактивах и в ВСР, а в ячейках Q12-Q21 – их массовые доли $W^i_{1\text{пр}}(A)$ в растворе Γ P «А» в 1-м приближении по формулам:

$$m_{\rm 1mp}^{i}(A) = m_{\rm 0mp}^{i}(A) + W_{\rm 1mp}^{i}(BCP) \cdot m_{A}^{BCP}$$
 (2.2.4)

$$W_{\rm lnp}^{i}(A) = \frac{m_{\rm lnp}^{i}(A)}{M_{A}}$$
 (2.2.5)

2.2.5. В ячейках P39-P43 и P45-P48 появятся значения масс летучих компонентов, внесенных в Γ P «С», m^i_{lmp} (С) (в г), вычисленные по формуле:

$$m_{\text{lmp}}^{i}(C) = m_{C}^{A} \cdot W_{\text{lmp}}^{i}(A) + m_{C}^{BCP} \cdot W_{\text{lmp}}^{i}(BCP)$$
 (2.2.6)

2.2.6. В ячейках Q39-Q43 и Q45-Q48 рассчитываются значения массовых долей летучих компонентов, внесенных в Γ P «С», $W^i_{1\pi p}$ (С) (г/г), по формуле:

$$W_{\rm lnp}^{i}(C) = \frac{m_{\rm lnp}^{i}(C)}{M_{C}}$$
 (2.2.7)

2.2.7. В ячейках R39-R48 вычисляются значения концентраций летучих компонентов, внесенных в Γ P «С», C^i_{lnp} (С) (в мг/л AA), по формуле:

$$C_{\text{lmp}}^{i}(C) = \frac{m_{\text{lmp}}^{i}(C)}{m^{Eth}(C)} \cdot \rho_{Eth}$$
 (2.2.8)

2.2.8. В ячейках S39-S48 рассчитываются значения градуировочных коэффициентов в 1-м приближении $RRF^{Eth}{}_{i}$ пр формуле:

$$RRF_{i,\text{lnp}}^{Eth} = \frac{C_{\text{lnp}}^{i}(C)}{\rho_{Eth}} \cdot \frac{\sum_{k=1}^{N} \left(A_{k}^{i}(C) / A_{k}^{Eth}(C) \right)}{\sum_{k=1}^{N} \left(A_{k}^{i}(C) / A_{k}^{Eth}(C) \right)^{2}}$$
(2.2.9)

2.3. Расчёт концентраций компонентов в растворах ВСР, «А» и «С» во 2-м приближении

2.3.1. В ячейках N12-N21 рассчитываются значения концентраций компонентов в ВСР во 2-м приближении $C^{i}_{2\pi p}(BCP)$ (в мг/л AA) по формуле:

$$C_{2mp}^{i}(BCP) = RRF_{i,1mp}^{Eth} \cdot \rho_{Eth} \cdot \frac{1}{N} \sum_{j=1}^{N} \left(A_{k}^{i}(BCP) / A_{k}^{Eth}(BCP) \right)$$
 (2.3.1)

2.3.2. В ячейках L12-L21 рассчитываются значения массовой доли компонентов в ВСР во 2-м приближении $W^{i}_{2\pi p}(BCP)$ (в г/г) по формуле:

$$W_{2np}^{i}(BCP) = \frac{ABV\%}{100\%} \cdot \frac{C_{2np}^{i}(BCP)}{\rho_{RCP}}$$
 (2.3.2)

2.3.3. В ячейках P12-P21 рассчитываются значения масс летучих компонентов и этанола $m^i_{2\pi p}(A)$ (в г) с учётом их содержания в исходных реактивах и ВСР, а в ячейках S12-S21 — массовые доли $W^i_{2\pi p}(A)$ в растворе «А» во 2-м приближении по формулам:

$$m_{2\text{nn}}^{i}(A) = m_{0\text{nn}}^{i}(A) + W_{2\text{nn}}^{i}(BCP) \cdot m_{A}^{BCP}$$
 (2.3.3)

$$W_{2\pi p}^{i}(\mathbf{A}) = \frac{m_{2\pi p}^{i}(\mathbf{A})}{M_{A}}$$
 (2.3.4)

2.3.4. В ячейках G39-G43 и G45-G48 появятся значения масс летучих компонентов, внесенных в Γ P «С», $m^i_{2\pi p}$ (С) (в г), вычисленные по формуле:

$$m_{2mp}^{i}(C)=m_{C}^{A} \cdot W_{2mp}^{i}(A)+m_{C}^{BCP} \cdot W_{2mp}^{i}(BCP)$$
 (2.3.5)

2.3.5. В ячейках K39-K43 и K45-K48 рассчитываются значения массовых долей летучих компонентов, внесенных в Γ P «С», $W^{i}_{2\pi p}$ (С) (г/г), по формуле:

$$W_{\rm 2np}^i(C) = \frac{m_{\rm 2np}^i(C)}{M_C}$$
 (2.3.6)

2.3.6. В ячейке J44 отображается точное значение объёма этанола в ΓP «С» (суммарно: за счёт ВСР и «базового» раствора ΓP «А»), $V^{Eth}(C)$ (в мл), вычисленное по формуле:

$$V^{Eth}(C) = \frac{m^{Eth}(C)}{\rho_{Eth}} \cdot 10^{6}$$
 (2.3.7)

2.3.7. В ячейках I39-I48 вычисляются значения концентраций летучих компонентов, внесенных в ГР «С», $C^i_{2\pi p}(C)$ (в мг/л АА), по формуле для i = 1, ..., 9:

$$C_{2\pi p}^{i}(C) = \frac{m_{2\pi p}^{i}(C)}{V^{Eth}(C)} \cdot 10^{6}$$
 (2.3.8)

Лист «Концентрации на печать»

	Дата создания	10-Фев-2025	Дата создания	10-Фев-2025	Дата создания	10-Фев-2025	Крепость, АВУ, об.%	39.59
№в-ва, <i>і</i>	ГР "А" 5000-6000 мг/л АА	Концентрация по результатам взвешивания	ГР "В" 400-600 мг/л АА	Концентрация по результатам взвешивания	ГР "D" 180-240 мг/л АА	Концентрация по результатам взвешивания		
	Компонент	С ^і (А), мг/л АА	Компонент	$\mathbf{C}^i(\mathbf{B})$, мг/л $\mathbf{A}\mathbf{A}$	Компонент	$\mathbf{C}^i(\mathbf{D})$, мг/л $\mathbf{A}\mathbf{A}$	Component	CAS
1	ацетальдегид	4978	ацетальдегид	490.9	ацетальдегид	196.4	acetaldehyde	CAS 75-07-0
2	метилацетат	5240	метилацетат	516.6	метилацетат	206.6	methyl acetate	CAS 79-20-9
3	этилацетат	5240	этилацетат	516.6	этилацетат	206.6	ethyl acetate	CAS 141-78-6
4	метанол	5253	метанол	530.4	метанол	220.4	methanol	CAS 67-56-1
5	2-пропанол	5242	2-пропанол	519.3	2-пропанол	209.3	propan-2-ol	CAS 67-63-0
Eth	этанол	789270	этанол	789270	этанол	789270	ethanol	CAS 64-17-5
6	1-пропанол	5213	1-пропанол	514.0	1-пропанол	205.6	propan-1-ol	CAS 71-23-8
7	изобутанол	5185	изобутанол	511.1	изобутанол	204.4	2-methylpropan-1-ol	CAS 78-33-1
8	бутанол	5134	бутанол	506.2	бутанол	202.4	butan-1-ol	CAS 71-36-3
9	изоамилол	5120	изоамилол	504.8	изоамилол	201.9	3-methylbutan-1-ol	CAS 137-32-6
	Диапазон	5000-6000 мг/л АА	Диапазон	400-600 мг/л АА	Диапазон	180-240 мг/л АА		
	Дата создания	10-Фев-2025	Дата создания	10-Фев-2025	Дата создания	10-Фев-2025	Дата создания	10-Фев-2025
20	Дата создания ГР "С"	10-Фев-2025 Концентрация по результатам	Дата создания ГР "1"	10-Фев-2025 Концентрация по результатам	Дата создания ГР "2"	10-Фев-2025 Концентрация по результатам	Дата создания ГР "3"	10-Фев-2025 Концентрация по результатам
№в-ва, і		Концентрация		Концентрация		Концентрация		Концентрация
№в-ва, і	ГР "С"	Концентрация по результатам	ГР "1"	Концентрация по результатам	ГР "2"	Концентрация по результатам	ГР "3"	Концентрация по результатам
№в-ва, <i>i</i>	ГР "С" 240-300 мг/л АА	Концентрация по результатам взвешивания	ГР "1" 25-40 мг/л АА	Концентрация по результатам взвешивания	ГР "2" 10-25 мг/л АА	Концентрация по результатам взвешивания	ГР "3" 2-5 мг/л АА	Концентрация по результатам взвешивания
	ГР "С" 240-300 мг/л АА Компонент	Концентрация по результатам взвешивания С ⁱ (C), мг/л АА	ГР "1" 25-40 мг/л АА Компонент	Концентрация по результатам взвешивания ${f C}^i(1)$, мг/л ${f A}{f A}$	ГР "2" 10-25 мг/л АА Компонент	Концентрация по результатам взвешивания $\mathbf{C}^i(2), \mathbf{M}\mathbf{\Gamma}/\mathbf{J} \ \mathbf{A}\mathbf{A}$	ГР "3" 2-5 мг/л АА Компонент	Концентрация по результатам взвешивания $\mathbf{C}^{i}(3), \mathbf{м}\mathbf{\Gamma}/\mathbf{\pi} \ \mathbf{A}\mathbf{A}$
1	ГР "С" 240-300 мг/л АА Компонент ацетальдегид	Концентрация по результатам взвешивания $\mathbf{C}^i(\mathbf{C}), \mathbf{M}\Gamma/\mathbf{J} \mathbf{A}\mathbf{A}$ 243.2	ГР "1" 25-40 мг/л АА Компонент ацетальдегид	Концентрация по результатам взвешивания $\mathbf{C}^{i}(1), \mathbf{M}\Gamma/\mathbf{\pi} \mathbf{A}\mathbf{A}$ 24.9	ГР "2" 10-25 мг/л АА Компонент ацетальдегид	Концентрация по результатам взвешивания $\mathbf{C}^{i}(2), \mathbf{M}\mathbf{\Gamma}/\mathbf{\Pi} \ \mathbf{A}\mathbf{A}$ 10.34	ГР "3" 2-5 мг/л АА Компонент ацетальдегид	Концентрация по результатам взвешивания $\mathbf{C}^{i}(3), \mathbf{м}\mathbf{\Gamma}/\mathbf{\pi} \ \mathbf{A}\mathbf{A}$ 2.136
1 2	ГР "С" 240-300 мг/л АА Компонент ацетальдегид метилацетат	Концентрация по результатам взвешивания С ⁱ (C), мг/л AA 243.2 255.9	ГР "1" 25-40 мг/л АА Компонент ацетальдегид метилацетат	Концентрация по результатам взвешивания	ГР "2" 10-25 мг/л АА Компонент ацетальдегид метилацетат	Концентрация по результатам взвешивания	ГР "3" 2-5 мг/л АА Компонент ацетальдегид метилацетат	Концентрация по результатам взвешивания С ⁱ (3), мг/л AA 2.136 2.119
1 2 3	ГР "С" 240-300 мг/л АА Компонент ацетальдегид метилацетат этилацетат	Концентрация по результатам взвешивания С ⁱ (C), мг/л АА 243.2 255.9 255.9	ГР "1" 25-40 мг/л АА Компонент ацетальдегид метилацетат этилацетат	Концентрация по результатам взвешивания С ⁱ (1), мг/л AA 24.9 26.1 26.1	ГР "2" 10-25 мг/л АА Компонент ацетальдегид метилацетат этилацетат	Концентрация по результатам взвешивания С ⁱ (2), мг/л AA 10.34 10.75 10.74	ГР "3" 2-5 мг/л АА Компонент ацетальдегид метилацетат этилацетат	Концентрация по результатам взвешивания С ⁱ (3), мг/л AA 2.136 2.119 2.109
1 2 3 4 5 Eth	ГР "С" 240-300 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол	Концентрация по результатам взяещивания С ⁴ (С), мг/л АА 243.2 255.9 259.9 269.7	ГР "1" 25-40 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол	Концентрация по результатам взвешивания С ⁱ (1), мг/л АА 24.9 26.1 26.1 39.9 28.8 789270.0	ГР "2" 10-25 мг/л АА Компонент ацеталь,дегид метилацетат этилацетат метанол	Концентрация по результатам взвешивания С ⁱ (2), мг/л АА 10.34 10.75 10.74 25.12	ГР "3" 2-5 мг/л АА Компонент ацеталь,дегид метилацетат этилацетат метанол	Концентрация по результатам взвешивания С ⁱ (3), мг/л АА 2.136 2.119 2.109 16.025 4.835 789270
1 2 3 4 5 Eth	ГР "С" 240-300 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол	Концентрация по результатам взвещивания С ⁴ (С), мг/л АА 243.2 255.9 255.9 269.7 258.6 789270 254.6	ГР "1" 25-40 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол	Концентрация по результатам взвешивания С ⁱ (1), мг/л АА 24.9 26.1 26.1 39.9 28.8 789270.0 25.9	ГР "2" 10-25 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол	Концентрация по результатам взвешивания С ⁴ (2), мг/л AA 10.34 10.75 10.74 25.12 13.55	ГР "3" 2-5 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол	Концентрация по результатам взвешивания С ⁱ (3), мг/л AA 2.136 2.119 2.109 16.025 4.835
1 2 3 4 5 Eth 6	ГР "С" 240-300 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол изобутанол	Концентрация по результатам взвещивания С ⁱ (C), мг/л АА 243.2 255.9 269.7 258.6 789270 254.6 253.2	ГР "1" 25-40 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол изобутанол	Концентрация по результатам взвешивания С ⁱ (1), мг/л АА 24.9 26.1 26.1 39.9 28.8 789270.0 25.9 25.8	ГР "2" 10-25 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол изобутанол	Концентрация по результатам взвещивания С ¹ (2), мг/л АА 10.34 10.75 10.74 25.12 13.55 789270	ГР "3" 2-5 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол	Концентрация по результатам взвешивания С ⁱ (3), мг/л АА 2.136 2.119 2.109 16.025 4.835 789270
1 2 3 4 5 Eth 6 7	ГР "С" 240-300 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол	Концентрация по результатам взвешивания С ^I (C), мп/л AA 243.2 255.9 269.7 258.6 789270 254.6 253.2 250.7	ГР "1" 25-40 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол	Концентрация по результатам въвсшивания С ^I (1), мг/л АА 24.9 26.1 26.1 39.9 28.8 789270.0 25.9 25.8 25.6	ГР "2" 10-25 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол	Концентрация по результатам въвешивания въвешивания С (2), мг/л AA 10.34 10.75 10.74 25.12 13.55 789270 10.64 10.59 10.48	ГР "3" 2-5 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол	Концентрация по результатам въвешивания С (3), мг/л АА 2.136 2.119 2.109 16.025 4.835 789270 2.060 2.049 2.029
1 2 3 4 5 Eth 6	ГР "С" 240-300 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол изобутанол	Концентрация по результатам взвещивания С ⁱ (C), мг/л АА 243.2 255.9 269.7 258.6 789270 254.6 253.2	ГР "1" 25-40 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол изобутанол	Концентрация по результатам взвешивания С ⁱ (1), мг/л АА 24.9 26.1 26.1 39.9 28.8 789270.0 25.9 25.8	ГР "2" 10-25 мг/л АА Компонент ацетальдегид метилацетат этилацетат метанол 2-пропанол 1-пропанол изобутанол	Концентрация по результатам взвешивания С ⁱ (2), мг/л AA 10.34 10.75 10.74 25.12 13.55 789270 10.64 10.59	ГР "3" 2-5 мг/л АА Компонент ацетальдегид метилацетат метанол 2-пропанол 1-пропанол изобутанол	Концентрация по результатам взвешивания С ⁱ (3), мг/л АА 2.136 2.119 2.109 16.025 4.835 789270 2.060 2.049