

OOO "Новые аналитические системы" New Analytical Systems, Ltd.

г. Минск, Беларусь unichrom@unichrom.com www.unichrom.com

Руководство:

«Синхронное создание методов градуировок и анализ образцов алкогольной продукции по методу ГОСТ 30536 и модифицированному методу внутреннего стандарта (ММВС) в Хроматэк-Аналитик 3.1»

Минск, 2025 г.

Резюме

В лабораториях по контролю безопасности и качества алкогольной продукции наиболее часто выполняют испытания по ГОСТ 30536-2013 «Водка и спирт этиловый из пищевого сырья. Газохроматографический экспресс-метод определения содержания токсичных микропримесей». Этот способ включает выполнение калибровки прибора по методу внешнего стандарта — абсолютной градуировки. В соответствии с ГОСТ 30536-2013 установление градуировочной (калибровочной) характеристики прибора заключается в определении коэффициентов отклика детектора RF_i (Response Factor — RF) на каждый исследуемый i-й летучий компонент в зависимости от величины его концентрации в испытуемом образце. Для этого регистрируют хроматограммы градуировочных стандартных образцов (СО) PB-1, PB-2, PB-3 из набора ГСО 8405, предназначенного для анализа водок, или градуировочных СО РС-1, PC-2, PC-3 из набора ГСО 8404, предназначенного для анализа спирта этилового из пищевого сырья.

В модифицированном методе внутреннего стандарта (ММВС) установление градуировочной (калибровочной) характеристики прибора заключается в расчете относительных коэффициентов отклика детектора $RRF_i^{\text{этманол}}$ (Relative Response Factor – RRF) на каждый исследуемый i-й летучий компонент относительно отклика на внутренний стандарт (этанол) в зависимости от отношения концентраций компонента и этанола. При этом предполагается использование только одного СО, им может быть PB-1 из набора Γ CO-8405 или PC-1 из набора Γ CO-8404. Важно, что при разметке пиков на хроматограммах в методе ММВС наряду с пиками анлизируемых летучих компонентов необходимо провести разметку пиков этанола.

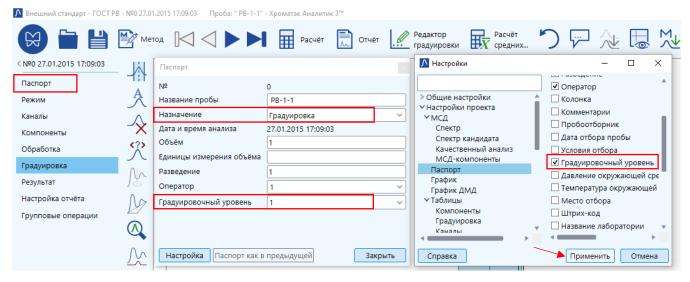
Определение количественного содержания летучих компонентов в алкогольной продукции при испытании по ГОСТ 30536-2013 и/или ММВС включает следующие этапы.

Этап 1. Регистрация хроматограмм набора градуировочных СО РВ-1, РВ-2, РВ-3 при анализе водки или набора градуировочных СО РС-1, РС-2, РС-3 при анализе спирта. Для каждого СО выполняют по 2-3 повторных измерения. Полный набор для установления градуировочной характеристики прибора, как правило, содержит 6-9 измеренных хроматограмм всего набора градуировочных растворов.

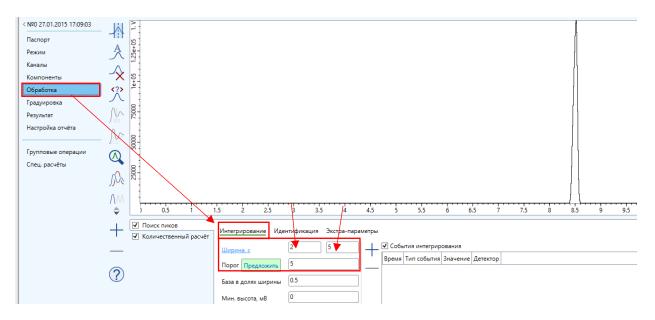
<u>Этап 2.</u> Расчет калибровочных коэффициентов RF_i и RRF_i . Анализ неопределенности, контроль линейности отклика детектора.

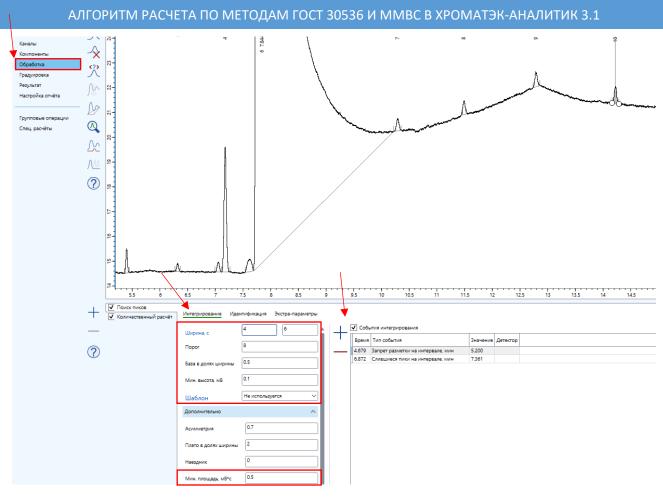
Этап 3. Регистрация хроматограмм образцов алкогольной продукции, по 2-3 повторных измерения.

<u>Этап 4.</u> Расчет средних значений и формирование отчетов в соответствии с ГОСТ 30536-2013 и ММВС.

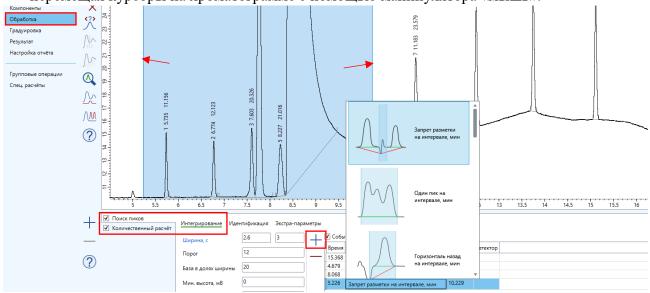

Следует отметить, что для работы по методу MMBC не требуется дополнительных измерений, анализ можно выполнять на основе хроматограмм, полученных при измерениях, выполненных при работе по ГОСТ 30536-2013.

Содержание

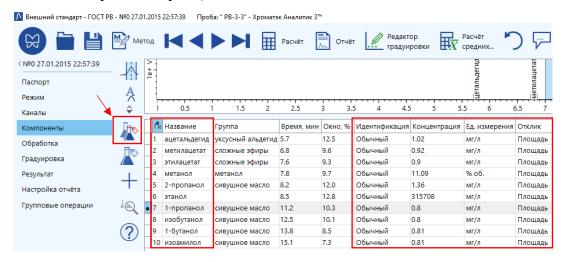

Измерение хроматограмм СО, разметка пиков. Создание градуировки по методу внешнего стандарта (абсолютная градуировка)	
Создание градуировки по модифицированному методу внутреннего стандарта (ММВС)	
Альтернативный выбор осей для построения градуровок	13
Контроль линейности в модифицированном методе внутреннего стандарта (ММВС)	14
Анализ образцов алкогольной продукции по ГОСТ30536	19
Анализ образцов алкогольной продукции по ММВС	24
Паспорта наборов ГСО 8405 (№51) и 8404 (№44)	28

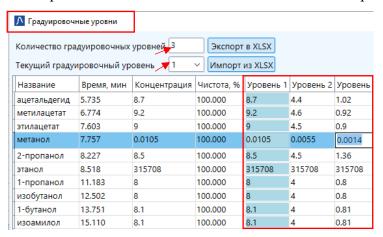

Измерение хроматограмм СО, разметка пиков. Создание градуировки по методу внешнего стандарта (абсолютная градуировка)

- 1. Измеряют хроматограмму градуировочного стандартного образца (СО).
- 2. Нажимают кнопку «Паспорт» на боковой панели. Появляется всплывающее окно, внизу которого нажимают кнопку «Настройка». Открывается модальное окно, в котором помечают предназначение образца градуировочный уровень.

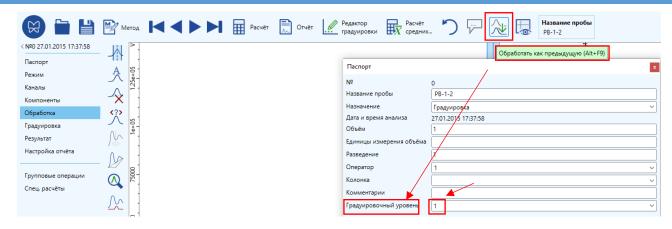


- 3. Заполняют паспорт, указав название CO с номером измерения и пометив, что хроматограмма соответствует градуировочному уровню.
- 4. Выполняют интегрирование (разметку пиков). Для этого открывают закладку «Обработка», переходят в окно «Поиск пиков» и подбирают параметры «Ширина» (пика) (напр., 4-6), «Порог» (напр., 8) (наклон касательной для определения начала и конца пика), нажимают кнопку «Расчет» вверху на панели инструментов.




- 5. Несколько раз варьируют параметры, пока не будет достигнута приемлемая разметка.
- 6. Установив минимальную площадь удаляют маленькие ненужные пики.
- 7. Для уточнения разметки (коррекции базовых линий и т.д.), нажимают «+» на панели «События интегрирования» и добавляют события на интервале. Из всплывающего списка выбирают действие, которое нужно выполнить, а также корректируют границы интервала, перемещая курсоры на хроматограмме с помощью манипулятора «мышь».

- 8. Переходят в окно «Количественный расчёт» и указывают метод расчета «Абсолютная градуировка (Внешний стандарт)». Создают многоуровневую градуировку, в частности, с использованием набора СО (3 образца, например, PB-1, PB-2, PB-3, или PC-1, PC-2, PC-3).
- 9. На боковой панели выбирают закладку «Компоненты». В открывшемся окне подписывают названия компонентов в таблице, содержащей параметры размеченных пиков.
- 10. В этой таблице указывают единицы измерения $M\Gamma/\Lambda$, у метанола % об. и функцию: $Y=K_1\cdot X$.
- 11. На боковой панели инструментов выбирают «Показать градуировочные уровни» (иконка колбочки с красной биркой).



12. Во всплывающем окне «Градуировочные уровни» указывают количество уровней (3 уровня) и вносят значения концентраций компонентов для каждого СО из паспорта на набор СО.

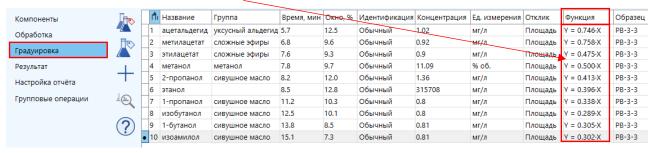
*Для этанола задаем значения концентрации одинаковыми для всех CO как: C(мг/л $) = 789270 \cdot$ крепость(v/v%)/ 100 %.

- 13. Если в паспорте указаны неопределенности, то их можно добавить в ячейки, нажав клавишу пробел (добавляется значок \pm).
- 14. Переходят к следующей хроматограмме. Паспорт создают как у предыдущей, но изменяют номер измерения (например, первая была PB-1-1, тогда вторая PB-1-2). Нажимают на верхней панели инструментов «Обработать как предыдущую». Затем в паспорте указывают номер градуировочного уровня. Нажимают на верхней панели «Расчёт».

- 15. Для всех хроматограмм градуировочных СО повторяют предыдущие действия (п.14).
- 16. Затем открывают закладку «Градуировка». На верхней панели нажимают кнопку «Расчет».
- 17. В окошке «График» будут отображены точки градуировки и градуировочная зависимость для выбранного в таблице летучего компонента. Над графиком рядом с названием компонента приводятся значения одного из критических факторов: ОСКО%, СКО(мг/л), коэффициента детерминации \tilde{R}_i^2 , коэффициента корреляции Пирсона и т.д. Из всплывающего списка можно выбирать один из этих параметров для отображения.
- 18. Параметры ОСКО%, СКО(мг/л) и прочие в виде списка выводятся в окне «Статистика». Во вкладке «Редактирование» можно отредактировать список градуировочных хроматограмм.
- 19. Значения среднеквадратичного отклонения (СКО, $\tilde{\sigma}$, мг/л) и относительного СКО (ОСКО, σ , %) используются для контроля повторяемости, а коэффициент детерминации \tilde{R}_i^2 для контроля линейности отклика детектора. Значения параметров рассчитываются по формулам:

$$\tilde{\sigma}_{i,j} = \sqrt{\sum_{k=1}^{M} \frac{\left(\tilde{C}_{i,j,k}^{u_{3M}} - \langle \tilde{C} \rangle_{i,j}^{u_{3M}}\right)^{2}}{M - 1}} \quad (1); \qquad \sigma_{i,j}, \% = \frac{\tilde{\sigma}_{i,j}}{\langle \tilde{C} \rangle_{i,j}^{u_{3M}}} \cdot 100\% \quad (2);$$

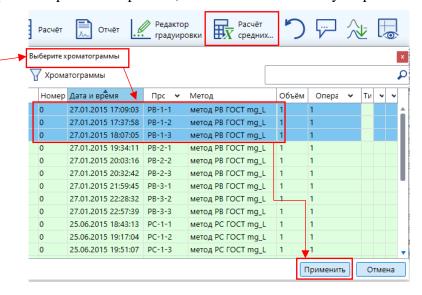
$$\tilde{R}_{i}^{2} = 1 - \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\tilde{C}_{i,j}^{ammecm} - R\tilde{F}_{i} \cdot A_{i,j,k}\right)^{2}}{M \cdot \sum_{j=1}^{N} \left(\tilde{C}_{i,j}^{ammecm} - \frac{1}{N} \sum_{j=1}^{N} \tilde{C}_{i,j}^{ammecm}\right)^{2}} \quad (3);$$


$$R\tilde{F}_{i} = \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\tilde{C}_{i,j}^{ammecm} \cdot A_{i,j,k}\right)}{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(A_{i,j,k}\right)^{2}} \quad (4);$$

$$\tilde{C}_{i,j,k}^{u_{3M}} = R\tilde{F}_{i} \cdot A_{i,j,k} \quad (5);$$

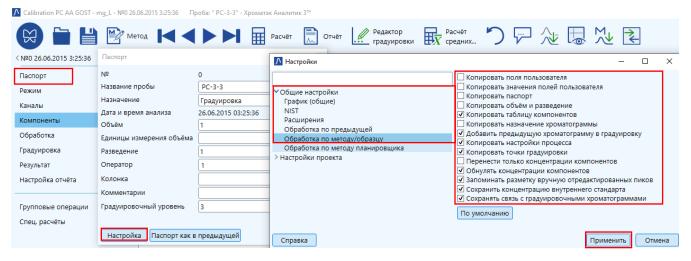

$$\langle \tilde{C} \rangle_{i,j}^{u_{3M}} = \left(\sum_{k=1}^{M} \tilde{C}_{i,j,k}^{u_{3M}}\right) / M \quad (6);$$

где $\tilde{C}_{i,j}^{annnecm}$ — паспортное значение концентрации i-го компонента в CO с уровнем концентрации j, в мг/л; $A_{i,j,k}$ — величина отклика детектора на i-й компонент, полученная в результате k-го измерения j-го раствора; M — число повторных измерений CO с уровнем концентрации j; N — число уровней концентрации CO; $R\tilde{F}_i$ — градуировочные коэффициенты (в (мг/л)/ед. площади пика); $\tilde{C}_{i,j,k}^{usm}$ — значение концентрации i-го компонента в j-м CO, рассчитанное по данным k-го хроматографического измерения с применением формулы (5), в мг/л; $\langle \tilde{C} \rangle_{i,j}^{usm}$ — среднее значение концентрации i-го компонента в j-м растворе, полученное в результате M повторных измерений, в мг/л.


20. Метод внешнего стандарта (абсолютной градуировки) используется для количественных расчетов концентраций в испытуемых образцах алкогольной продукции в соответствии с ГОСТ 30536. В этом случае градуировочная зависимость строится по методу наименьших квадратов и рассчитывается величина коэффициента отклика детектора на i-й летучий компонент RF_i (RF – response factor) для каждого летучего компонента. Коэффициенты $R\tilde{F}_i$ имеют размерность: (мг/л)/(ед. площади пика). Значения $R\tilde{F}_i$ отображаются в таблице в закладке «Градуировка» как коэффициенты K_1 функции $Y = K_1 \cdot X$, где X – площадь пика, Y – концентрация (в мг/л).

21. Открывают закладку «Результат». Появится таблица, в которой в колонке «Концентрация» будут приведены значения концентрации компонентов $\tilde{C}_{i,j,k}^{usm}$, рассчитанные по результатам измерений хроматограмм с применением построенной градуировки и формул (4) и (5).

22. На верхней панели инструментов выбирают «Расчет средних значений». В появившейся таблице выбирают несколько строк, соответствующих хроматограммам, зарегистрированным для образцов при повторных измерениях, и нажимают на кнопку «Применить».

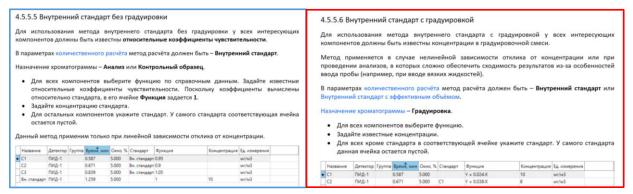


23. Появится окно с таблицей, содержащей, в частности, средние значения концентрации $\langle \tilde{C} \rangle_{i,j}^{usm} \pm \text{CKO } (\tilde{\sigma}_{i,j})$, в мг/л, ОСКО в % ($\sigma_{i,j}$, %), рассчитанные для выбранных хроматограмм по формулам (1), (2), (6), зарегистрированным в условиях повторяемости.

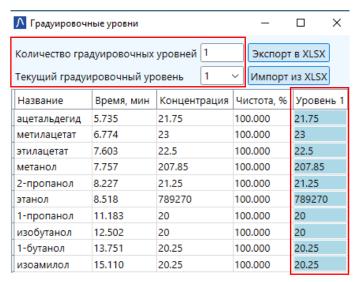
Обработка	X		П̂с	Название	Заданная конц	Концентрация	Ед. измер	СКО (Конц.), %	Точность, %	Количество
Результат	1	•	1	ацетальдегид	8.700	8.574 ± 0.5700	мг/л	3.2	1.4486	3
Результат	1		2	метилацетат	9.200	9.266 ± 0.3973	мг/л	2.6	0.7225	3
Результат (средние)			3	этилацетат	9.000	9.011 ± 0.3737	мг/л	2.7	0.1180	3
Настройка отчёта	_		4	метанол	0.01050	0.01062 ± 0.000649	% об.	4.4	1.1180	3
·			5	2-пропанол	8.500	8.587 ± 0.5060	мг/л	4.3	1.0184	3
			6	этанол	315700	329500 ± 19450	мг/л	4.1	4.3657	3
			7	1-пропанол	8.000	8.077 ± 0.5202	мг/л	4.8	0.9647	3
			8	изобутанол	8.000	8.066 ± 0.4144	мг/л	3.9	0.8269	3
			9	1-бутанол	8.100	8.181 ± 0.5215	мг/л	4.9	0.9984	3
			10	изоамилол	8.100	8.137 ± 0.4323	мг/л	4.3	0.4614	3

24. Для оценки правильности метода рассчитывается величина смещения метода ($\delta_{i,j}$, % - в таблице обозначается как «Точность, %») по формуле: $\delta_{i,j}$, % = $\frac{\left(\langle \tilde{C} \rangle_{i,j}^{usm} - \tilde{C}_{i,j}^{ammecm}\right)}{\tilde{C}_{i}^{ammecm}} \cdot 100\% \quad (7).$

25. Таким образом, метод градуировки создан, сохраним его (например, «метод PB ГОСТ mg_L» - градуировка по растворам PB или «метод PC ГОСТ mg_L» - градуировка по растворам PC).



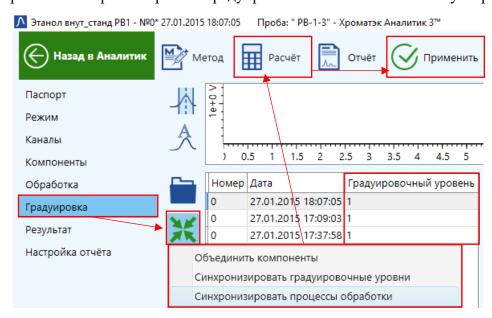
26. Следует отметить, что значения концентраций летучих компонентов в паспортах СО приводятся в мг/дм³ и такая же размерность используется на начальных этапах выполнения работы по ГОСТ 30536. Конечные результаты измерений концентрации выражают в мг/л в расчете на безводный этанол (мг/л АА), для чего выполняется пересчет значений концентраций. Используются формулы:


$$C_i^{u_{3M}}$$
 [по ГОСТ 30536, мг/ л AA] = $\tilde{C}_i^{u_{3M}} \cdot 100\%$ / крепость (8) $C_{memahox}^{u_{3M}}$ [по ГОСТ 30536, %, v/ v AA] = $\tilde{C}_{memahox}^{u_{3M}} \cdot 100\%$ / крепость (9)

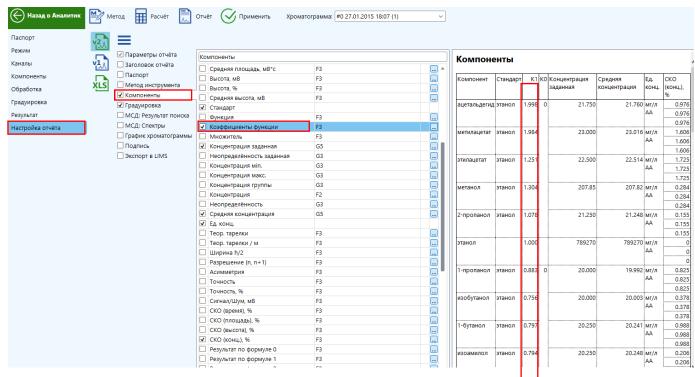
Создание градуировки по модифицированному методу внутреннего стандарта (ММВС)

- 27. В пунктах 1-7 было описано как заполнять паспорт для хроматограмм СО, размечать и интегрировать пики. Пункты с 8 по 26 соответствуют созданию градуировки по внешнему стандарту. Далее описывается как заменить метод градуировки на использование внутреннего стандарта этанола, содержащегося в СО. В паспорте должно быть указано: название образца (СО, выбранного в качестве градуировочного, например РВ-1), назначение «Градуировка», объём образца, градуировочный уровень «1».
- 28. Открывают закладку «Обработка», заходят в окно «Количественный расчёт» и создают метод с градуировкой указывают метод расчета «Внутренний стандарт с эффективным объемом».

- 29. В окне «Дополнительно» указывают (ставится «птичка») <u>«Градуировка в относительных осях</u> при использовании стандарта».
- 30. На боковой панели инструментов выбирают «Показать градуировочные уровни» (иконка колбочки с красной биркой). Указывают число градуировочных уровней «1». <u>Во всплывающем окне «Градуировочные уровни» вносят значения концентраций компонентов для СО в мг/л АА!!!</u>. Для этанола 789270 мг/л АА. Нажимают «Расчет».



31. Открывают закладку «Компоненты». В таблице компонентов в столбце «Стандарт» у всех компонентов (кроме этанола) указывают в качестве стандарта этанол, а в столбце «Ед. измерения» указывают мг/л AA. Функцию выбирают $Y=K_1 \cdot X$, а для этанола указывают


функцию «По справочным данным» и выставляют значение «1». Нажимаем «Расчет». Появятся коэффициенты функции, представляющие собой коэффициенты $RRF_i^{\text{этпанол}}$.

Компоненты		ιŤα	Название	Группа	Стандарт	Функция	Концентрация	Ед. измерения
Обработка		1	ацетальдегид	уксусный альдегид	этанол	Y = 2.00·X	21.75	мг/л АА
Сорасотка	Πe>	2	метилацетат	сложные эфиры	этанол	Y = 1.98·X	23	мг/л АА
Градуировка		3	этилацетат	сложные эфиры	этанол	Y = 1.25·X	22.5	мг/л АА
Результат		4	метанол	метанол	этанол	Y = 1.30·X	207.85	мг/л АА
Настройка отчёта	+	5	2-пропанол	сивушное масло	этанол	Y = 1.08·X	21.25	мг/л АА
riaciponika oracia		• 6	этанол			1.00	789270	мг/л АА
Групповые операции	10	7	1-пропанол	сивушное масло	этанол	Y = 0.883·X	20	мг/л АА
	_`	8	изобутанол	сивушное масло	этанол	Y = 0.756·X	20	мг/л АА
	(?)	9	1-бутанол	сивушное масло	этанол	Y = 0.797·X	20.25	мг/л АА
		10	изоамилол	сивушное масло	этанол	Y = 0.794·X	20.25	мг/л АА

- 32. Переходят во вкладку результат и нажимают «Расчет». Затем проводят повторное измерение хроматограммы для СО и применяют к нему инструмент «Обработать как предыдущую». Можно выполнить еще одно повторное измерение хроматограммы и повторить процедуру обработки «Обработать как предыдущую».
- 33. Проверяют, чтобы у всех хроматограмм градуировочного уровня были правильно заполнены паспорта, расставлены пики, проведен перерасчет концентраций.
- 34. Во вкладке «Редактирование» можно отредактировать список градуировочных хроматограмм. Применяют инструмент «Редактор градуировки» (на верхней панели инструментов). Появляется окно, в котором надо открыть окно «меню заполнения» и последовательно к выбранным хроматограммам СО применить: «Объединить компоненты», «Синхронизировать градуировочные уровни», «Синхронизировать процессы обработки». Затем нажать «Расчет» и выбрать «Пересчет всех хроматограмм в градуировке» и затем нажать кнопку «Применить».

35. Сохраняют отчет, например, в формате *.xlsx для сохранения градуировочных коэффициентов $RRF_{:}^{:manon}$. В отчете можно задать поля как показано ниже.

36. Значения СКО (σ , в мг/л AA), ОСКО (σ , %), коэффициент детерминации R^2 рассчитываются в программе по формулам:

$$\sigma_{i,j} = \sqrt{\sum_{k=1}^{M} \frac{\left(C_{i,j,k}^{usm} - \langle C \rangle_{i,j}^{usm}\right)^{2}}{M-1}} (10); \quad \sigma_{i,j}, \% = \frac{\sigma_{i,j}}{\langle C \rangle_{i,j}^{usm}} \cdot 100\% (11);$$

$$R_{i}^{2} = 1 - \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(C_{i,j}^{ammecm} - RRF_{i}^{gmahon} \cdot \rho_{gmahon} \cdot A_{i,j,k} / A_{gmahon,j,k}\right)^{2}}{M \cdot \sum_{j=1}^{N} \left(C_{i,j}^{ammecm} - \frac{1}{N} \sum_{j=1}^{N} C_{i,j}^{ammecm}\right)^{2}} (12);$$

$$RRF_{i}^{gmahon} = \frac{C_{i,kanhop}^{ammecm} \sum_{k=1}^{M} \left(A_{i,kanhop,k} / A_{gmahon,kanhop,k}\right)}{\rho_{gmahon} \sum_{k=1}^{M} \left(A_{i,kanhop,k} / A_{gmahon,kanhop,k}\right)^{2}} (13);$$

$$C_{i,j,k}^{usm} = RRF_{i}^{gmahon} \cdot \rho_{gmahon} \cdot \frac{A_{i,j,k}}{A_{gmahon,j,k}} (14); \quad \langle C \rangle_{i,j}^{usm} = \left(\sum_{k=1}^{M} C_{i,j,k}^{usm}\right) / M (15);$$

где $C_{i,j}^{ammecm}$ — паспортное значение концентрации i-го летучего компонента в СО с уровнем концентрации j, в мг/л AA; $A_{i,j,k}$ — величина отклика детектора на i-й летучий компонент, полученная в результате k-го измерения j-го раствора; M — число измерений СО с уровнем

концентрации j; N — количество уровней концентрации CO; $RRF_i^{\mathit{этанол}}$ — градуировочные коэффициенты; $\rho_{\mathit{этанол}}$ — значение концентрации этанола в CO, выраженное в мг/л AA, равно табличному значению плотности безводного этанола (789270 мг/л при температуре 20 °C); $C_{i,j,k}^{\mathit{изм}}$ — значение концентрации i-го компонента в j-м растворе, рассчитанное по данным k-го хроматографического измерения с применением формулы (5), в мг/л AA; $\langle C \rangle_{i,j}^{\mathit{изм}}$ — среднее значение концентрации i-го летучего компонента в j-м растворе, полученное в результате M повторных измерений, в мг/л AA.

- 38. Таким образом, метод градуировки ММВС создан, сохраним его. Например, как «Этанол внутр_станд РВ1».

Альтернативный выбор осей для построения градуровок

Следует отметить, что иногда строят калибровочные зависимости $\mathbf{Y} = RRF_i^{^{9manon}} \cdot \mathbf{X}$ с противоположным выбором осей:

Y — отклик или отношение откликов, полученных для i-го летучего соединения и этанола как внутреннего стандарта ($A_{i,i,k}$ или $A_{i,j,k}$ / $A_{\mathit{этанол},j,k}$)

X — количество или отношение количеств i-го летучего соединения и этанола ($C_{i,j}^{ammecm}$ или $C_{i,j}^{ammecm}$ / $ho_{_{2mano,1}}$).

В таком случае градуировочные коэффициенты ($R\tilde{F}_i$, $RRF_i^{\text{этанол}}$), коэффициенты детерминации (\tilde{R}_i^2 , R_i^2) для данной линейной зависимости и концентрации компонентов в образце ($\tilde{C}_{i,j,k}^{\text{изм}}$, $C_{i,j,k}^{\text{изм}}$) вычисляются по формулам:

по методу внешнего стандарта (ESTD):

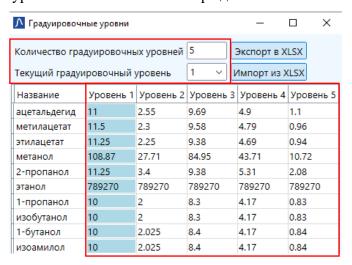
$$\tilde{R}_{i}^{2} = 1 - \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(A_{i,j,k} - R\tilde{F}_{i} \cdot \tilde{C}_{i,j}^{ammecm} \right)^{2}}{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(A_{i,j,k} - \frac{1}{N \cdot M} \sum_{j=1}^{N} \sum_{k=1}^{M} \left(A_{i,j,k} \right) \right)^{2}}$$

$$R\tilde{F}_{i} = \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\tilde{C}_{i,j}^{ammecm} \cdot A_{i,j,k} \right)}{M \cdot \sum_{j=1}^{N} \left(\tilde{C}_{i,j}^{ammecm} \right)^{2}}$$

$$\tilde{C}_{i,j,k}^{u3M} = \left(\frac{1}{R\tilde{F}_{i}} \right) \cdot A_{i,j,k}$$
(5'),

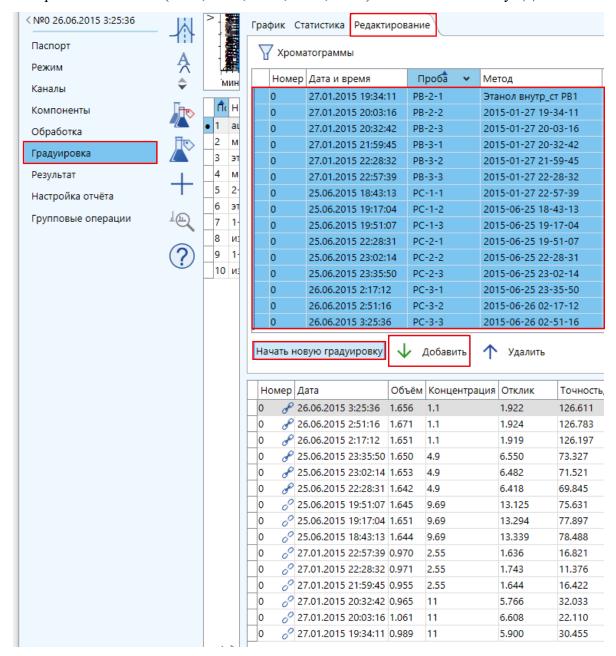
<u>по методу внутреннего стандарта (этанол – ISTD):</u>

$$R_{i}^{2} = 1 - \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\left(A_{i,j,k} / A_{3mahon,j,k} \right) - RRF_{i}^{3mahon} \cdot \left(C_{i,j}^{ammecm} / \rho_{3mahon} \right) \right)^{2}}{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\left(A_{i,j,k} / A_{3mahon,j,k} \right) - \frac{1}{N \cdot M} \sum_{j=1}^{N} \sum_{k=1}^{M} \left(A_{i,j,k} / A_{3mahon,j,k} \right) \right)^{2}}$$

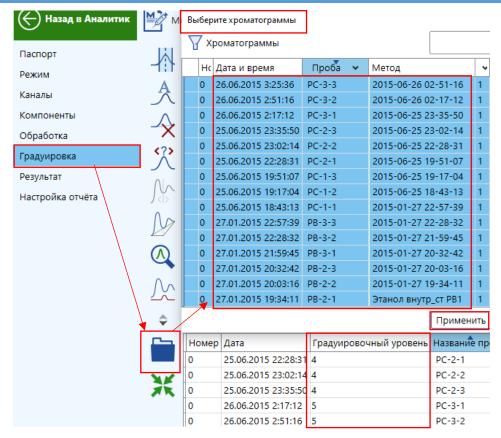

$$RRF_{i}^{3mahon} = \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\left(C_{i,j}^{ammecm} / \rho_{3mahon} \right) \cdot \left(A_{i,j,k} / A_{3mahon,j,k} \right) \right)}{M \cdot \sum_{j=1}^{N} \left(C_{i,j}^{ammecm} / \rho_{3mahon} \right)^{2}}$$

$$C_{i,j,k}^{usm} = \left(1 / RRF_{i}^{3mahon} \right) \cdot \rho_{3mahon} \cdot \frac{A_{i,j,k}}{A_{3mahon,j,k}}$$

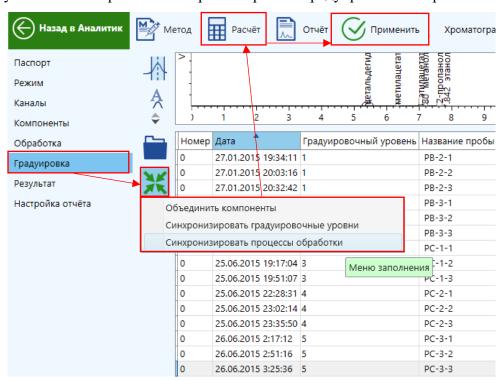
$$(13'),$$

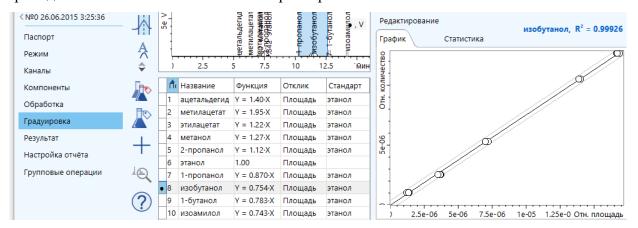

Контроль линейности в модифицированном методе внутреннего стандарта (ММВС)

- 1. Контроль линейности отклика детектора можно выполнять с примением СО, которые не использовались при определении градуировочных коэффициентов *RRF_i*. Например, если градуировка выполнялась на основе измерений PB-1, то можно использовать СО PB-2 и PB-3 или PB-2, PB-3, PC-1, PC-2, PC-3. Проведем контроль линейности с использованием 5 растворов: PB-2, PB-3, PC-1, PC-2, PC-3.
- 2. В пунктах 1-7 было описано как заполнять паспорт для хроматограмм СО, размечать и интегрировать пики. Пункты с 28 по 39 соответствуют созданию метода градуировки по внутреннему стандарту с использованием этанола, содержащегося в СО, в качестве внутреннего стандарта (ММВС). Метод ММВС надо применить к хроматограмме PB-2-1, полученной при первом измерении СО PB-2. На верхней панели инструментов выбирают инструмент «Обработать по методу» и во всплывающем окне выбирают соответствующий метод, например, «Этанол внутр станд PB1».
- 3. В паспорте должно быть указано: название образца (СО, выбранного в качестве градуировочного, например PB-2-1), назначение «Градуировка», объём образца.
- 4. Переходят в закладку «Компоненты». Проверяют, чтобы все пики были найдены. На хроматограмме проверяют наличие и разметку пиков компонентов, внесенных в градуировку. При необходимости корректируют имеющиеся пики. Если какой-либо из пиков не был найден, то необходимо добавить события интегрирования и провести перерасчет.
- 5. Открывают закладку «Обработка». На боковой панели инструментов выбирают «Показать градуировочные уровни» (иконка колбочки с красной биркой). Указывают число градуировочных уровней «5». Во всплывающем окне «Градуировочные уровни» вносят значения концентраций компонентов для СО в мг/л АА. Для этанола 789270 мг/л АА. Пусть растворы РВ-2 и РВ-3 соответствуют 1 и 2 уровням градуировки, а растворы РС-1, РС-2 и РС-3 соответственно 3, 4 и 5 уровням. Выполняют экспорт данных в XLSX.



- 6. Переходят во вкладку результат и нажимают «Расчет».
- 7. Затем переходят к следующей хроматограмме СО, на основе которой получается следующая точка контроля линейности, и применяют к ней инструмент «Обработать как предыдущую». Так делают для всех хроматограмм, включаемых в контроль линейности.

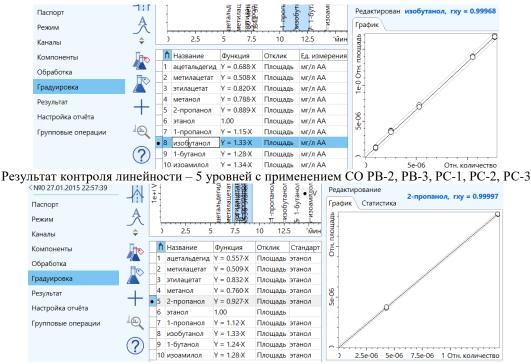

- 8. Проверяют, чтобы у всех хроматограмм контроля линейности были правильно заполнены паспорта (в них следует указать номер градуировочного уровня), на хроматограммах правильно расставлены пики и в закладке «Расчет» проведен перерасчет концентраций.
- 9. Заходят в закладку «Градуировка». Открывают окно «Редактирование», нажимают кнопку «Начать новую градуировку». Выбирают хроматограммы СО, на основе которых проводится контроль линейности (РВ-2, РВ-3, РС-1, РС-2, РС-3) и нажимают кнопку «Добавить».


10. Применяют инструмент «Редактор градуировки» (на верхней панели инструментов). На боковой панели выбирают инструмент «Выбор хроматограмм». Выбирают нужные хроматограммы и нажимают кнопку «Применить». В таблице (ниже) проверяют правильное заполнение градуировочных уровней.

11. На боковой панели выбирают инструмент «Меню заполнения» и последовательно к выбранным хроматограммам СО применяют: «Объединить компоненты», «Синхронизировать градуировочные уровни», «Синхронизировать процессы обработки». Затем нажимают «Расчет» и указывают «Пересчет всех хроматограмм в градуировке» и «Применить».

12. Возвращаются во вкладку «Градуировка». На графике приводится график линейной зависимости: отношение концентраций (ось Y, отн.количество) и отношение площадей (ось X, отн.площадь) летучих компонентов к параметрам этанола. Во вкладке «Статистика» приводятся значения статистических параметров.

Результат контроля линейности – 5 уровней с применением CO PB-2, PB-3, PC-1, PC-2, PC-3



Результат контроля линейности – 2 уровней с применением CO PB-2 и PB-3

i	Компонент	C_p (PB-2, PB-3)	R ² (PB-2, PB-3)	<i>C_p</i> (PB-2, PB-3, PC-1,2,3)	R ² (PB-2, PB-3, PC-1,2,3)
1	ацетальдегид	0.99909	0.98917	0.93475	0.87376
2	метилацетат	0.99986	0.99971	0.98704	0.96685
3	этилацетат	0.99744	0.99484	0.99726	0.9933
4	метанол	0.99994	0.99928	0.99671	0.99039
5	2-пропанол	0.99997	0.99992	0.99617	0.99039
6	1-пропанол	0.9998	0.99957	0.99892	0.99783
7	изобутанол	0.99989	0.99891	0.99968	0.99926
8	1-бутанол	0.99987	0.99961	0.99823	0.99643
9	изоамилол	0.99994	0.99846	0.99679	0.99196

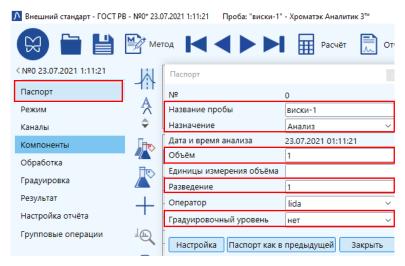
$$C_{p} = \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\left(\frac{C_{i,j}^{ammecm}}{\rho_{omanon}} - \frac{1}{N} \sum_{j=1}^{N} \frac{C_{i,j}^{ammecm}}{\rho_{omanon}} \right) \cdot \left(\frac{A_{i,j,k}}{A_{omanon,j,k}} - \frac{1}{N \cdot M} \sum_{j=1}^{N} \sum_{k=1}^{M} \frac{A_{i,j,k}}{A_{omanon,j,k}} \right) \right)}{\sqrt{M \cdot \left(\sum_{j=1}^{N} \left(\frac{C_{i,j}^{ammecm}}{\rho_{omanon}} - \frac{1}{N} \sum_{j=1}^{N} \frac{C_{i,j}^{ammecm}}{\rho_{omanon}} \right)^{2} \right) \cdot \left(\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\frac{A_{i,j,k}}{A_{omanon,j,k}} - \frac{1}{N \cdot M} \sum_{j=1}^{N} \sum_{k=1}^{M} \frac{A_{i,j,k}}{A_{omanon,j,k}} \right)^{2} \right)}}$$
(16).

При альтернативном выборе осей (открывают «Обработка» - «Количественный расчёт» - «Дополнительно» и указывают «Градуировочная зависимость отклика (ось Y) от количества (ось X)»: Y – отношение откликов, полученных для i-го летучего соединения и этанола как внутреннего стандарта ($A_{i,j,k}$ или $A_{i,j,k}$ / $A_{\mathit{этанол},j,k}$) и X – отношение количеств i-го летучего соединения и этанола ($C_{i,j}^{\mathit{атвтест}}$ или $C_{i,j}^{\mathit{атвтест}}$ / $\rho_{\mathit{этанол}}$) – следующие результаты:

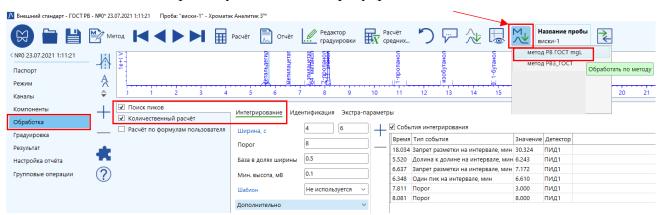
Результат контроля линейности – 2 уровней с применением CO PB-2 и PB-3

i	Компонент	C_p (PB-2, PB-3)	R^2 (PB-2, PB-3)	C_p (PB-2, PB-3, PC-1,2,3)	R ² (PB-2, PB-3, PC-1,2,3)
1	ацетальдегид	0.99909	0.98714	0.93475	0.86059
2	метилацетат	0.99986	0.99971	0.98704	0.97055
3	этилацетат	0.99744	0.99484	0.99726	0.99369
4	метанол	0.99994	0.99925	0.99671	0.99314
5	2-пропанол	0.99997	0.99992	0.99617	0.99104
6	1-пропанол	0.9998	0.99958	0.99892	0.99781
7	изобутанол	0.99989	0.99885	0.99968	0.99925
8	1-бутанол	0.99987	0.99962	0.99823	0.99645
9	изоамилол	0.99994	0.99836	0.99679	0.99135

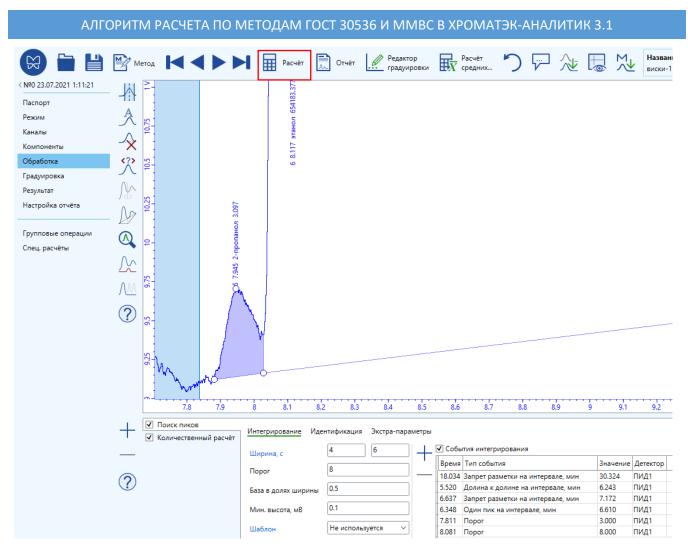
$$R_{i}^{2} = 1 - \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\left(A_{i,j,k} / A_{\text{эманол},j,k} \right) - RRF_{i}^{\text{эманол}} \cdot \left(C_{i,j}^{\text{амтест}} / \rho_{\text{эманол}} \right) \right)^{2}}{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\left(A_{i,j,k} / A_{\text{эманол},j,k} \right) - \frac{1}{N \cdot M} \sum_{j=1}^{N} \sum_{k=1}^{M} \left(A_{i,j,k} / A_{\text{эманол},j,k} \right) \right)^{2}}$$

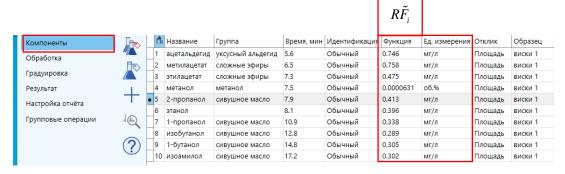

$$RRF_{i}^{\text{эманол}} = \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(A_{i,j,k} / A_{\text{эманол},j,k} \right)}{M \cdot \sum_{i=1}^{N} \left(C_{i,j}^{\text{амтест}} / \rho_{\text{эманол}} \right)}$$

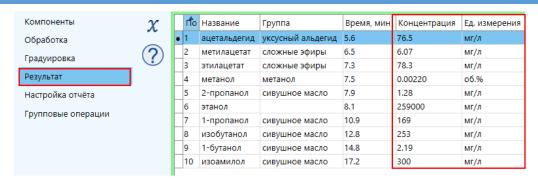
$$(13'').$$

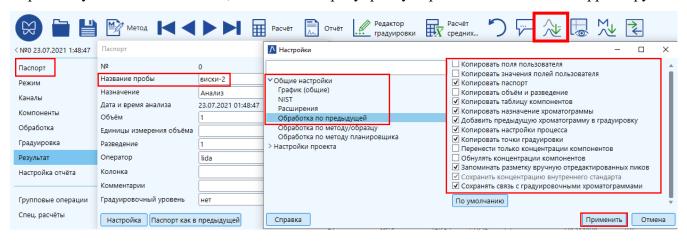

Коэффициент корреляции C_p (rxy) не зависит от выбора осей координат и вычисляется по ф.(16).

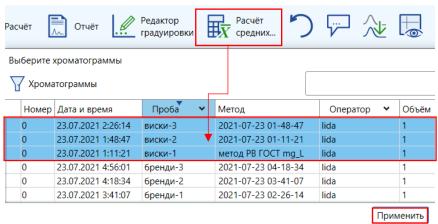
Анализ образцов алкогольной продукции по ГОСТ30536


1. Измеряют хроматограмму испытуемого образца алкогольной продукции. В закладке «Паспорт» указывают назначение «Анализ», название пробы.

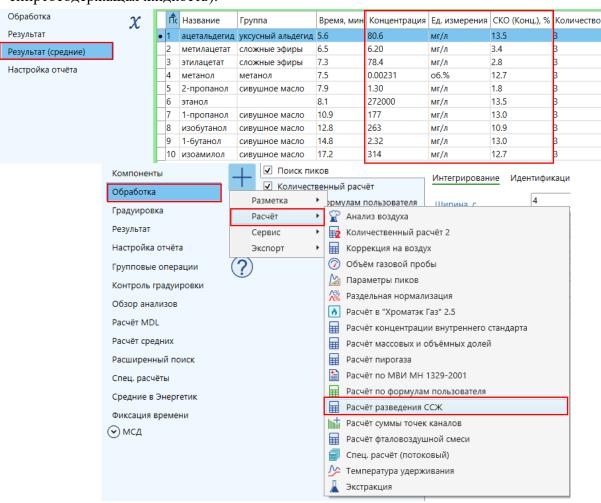

2. На верхней панели инструментов выбирают инструмент «Обработать по методу» и во всплывающем окне выбирают нужный метод с градуировкой по ГОСТ 30536.


- В закладке «Обработка» необходимо, чтобы были включены «Поиск пиков» и «Количественный расчет».
- 3. Переключаясь между двумя закладками «Компоненты» и «Обработка», проверяют наличие и разметку пиков компонентов, внесенных в градуировку. При необходимости корректируют имеющиеся пики, посторонние пики удаляют. Если какой-либо из пиков не был найден, то необходимо добавить события интегрирования и провести перерасчет.


Например, в одном из анализов на хроматограмме не был обнаружен пик 2-пропанола вследствие высокого заданного значения порога. После добавления в события интегрирования снижения значения порога на интервале, пик был найден.


4. Открывают закладку «Результат» и нажимают на верхней панели инструментов «Расчет». В таблице в столбце «Концентрация» выводятся значения концентрации.

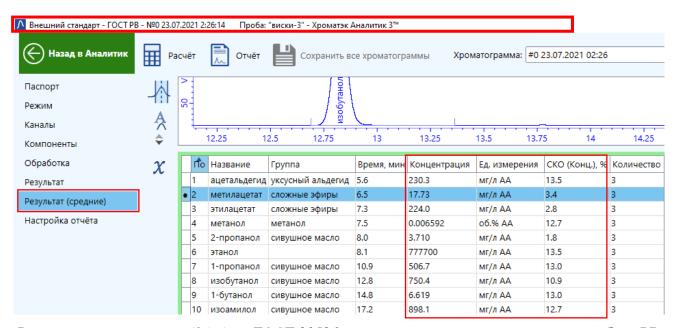
- 5. Проводят повторное измерение хроматограммы образца. Затем в закладке «Паспорт» нажимают кнопку «Паспорт как в предыдущей», после чего корректируют название пробы. На панели инструментов нажимают кнопку «Обработать как предыдущую».
- 6. Переключаясь между двумя закладками «Компоненты» и «Обработка», проверяют наличие и разметку пиков компонентов, внесенных в градуировку. При необходимости корректируют.



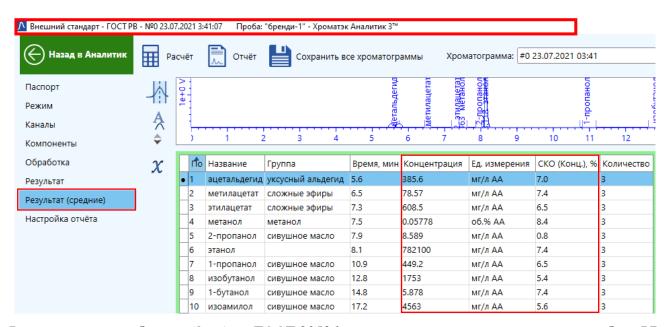
- 7. Заходят в закладку «Результат», нажимают на верхней панели инструментов «Расчет». В таблице в столбце «Концентрация» выводятся значения концентрации для текущей хроматограммы. Проводят не менее двух повторных измерений образца.
- 8. Далее, рассчитывают средние значения для хроматограмм, полученных при повторных измерениях образца. На верхней панели инструментов нажимают кнопку «Расчёт средних» появляется окно, в котором выбирают для каких хроматограмм проводится расчет средних значений концентраций и нажимают кнопку «Применить».

9. В результате появится окно «Результат (средние)» с таблицей, в которой приведены полученные средние значения концентрации и СКО,%.

Следует отметить, что значения концентраций летучих компонентов в паспортах СО приводятся в мг/дм³, и такая же размерность используется на начальных этапах выполнения работы по ГОСТ 30536. Конечные результаты измерений концентрации следует выражать в мг/л в расчете на безводный этанол (мг/л AA), для чего выполняется пересчет концентраций, например с помощью добавления на закладке «Обработка» в окне «Расчёт» инструмента «Расчет разведения ССЖ» (ССЖ – спиртосодержащая жидкость).

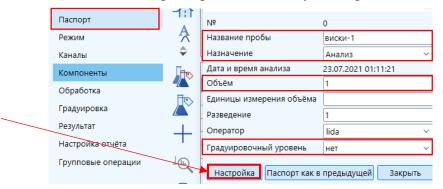

Используются формулы:

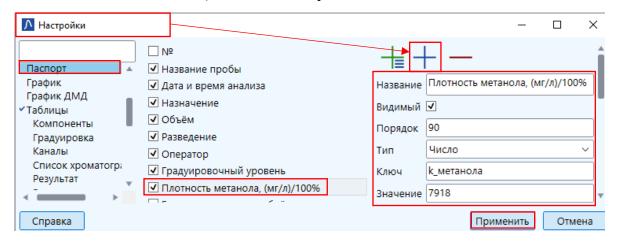
$$C_i^{\text{изм}}$$
[по ГОСТ 30536,мг/л AA] = $\tilde{C}_i^{\text{изм}} / \left(\kappa penocmb / 100\% \right)$ (8)


$$C_{\text{метанол}}^{\text{изм}}$$
 [по ГОСТ 30536, %, v/ v AA] = $\tilde{C}_{\text{метанол}}^{\text{изм}} \cdot 100\%$ / крепость (9)

Разведение: Компоненты ✓ Поиск пиков Название Значение Расчёт разведения ССЖ Обработка Содержание этанола в пробе, % 40 ✓ Количественный расчёт Выполнять пересчёт на безводный спирт Да Обработка ка об.% АА Расчёт по формулам пользователя Ед. концентрации метанола (безводный спирт) Результат Ед. концентраций метанола об.% Настройка отчёта Ед. концентрации этанола (безводный спирт) мг/л АА Ед. концентраций этанола мг/л Ед. концентраций для остальных компонентов мг/л Групповые операции Ед. концентраций для остальных компонентов (безводный спирт) мг/л АА

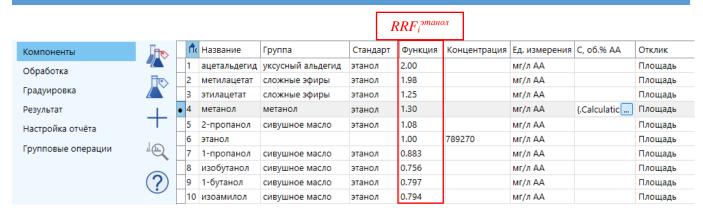
10. Вносят значение параметра «Содержание этанола в пробе, %». Применяют это значение в расчетах и получают результат в мг/л AA:

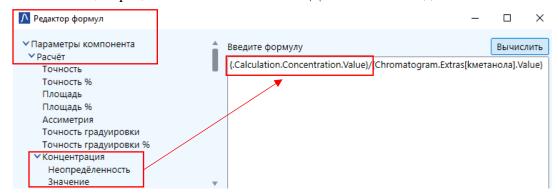

Результат анализа виски (35%) по ГОСТ 30536 с использованием градуировочного набора РВ

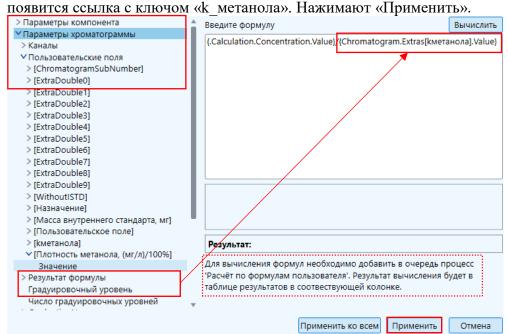

Результат анализа бренди (36%) по ГОСТ 30536 с использованием градуировочного набора РВ

Анализ образцов алкогольной продукции по ММВС

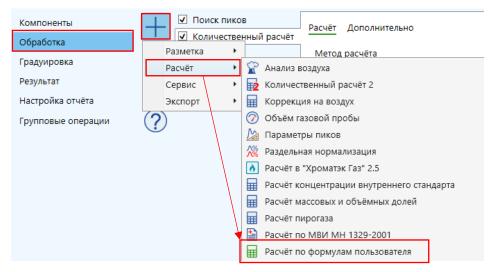
1. Для измеренной хроматограммы испытуемого образца алкогольной продукции паспорт заполняется следующим образом: назначение «Анализ», градуировочный уровень «нет». В паспорт вносят дополнительный параметр, нажав кнопку «Настройка».


2. Добавляют в паспорт параметр — число, необходимое в конце измерений для пересчета концентрации метанола из размерности мг/л АА в размерность об.% в расчете на безводный этиловый спирт (об.% АА). Для этого в окне «Настройка» нажимают на «+» и добавляют «Пользовательское поле». Можно назвать его «Плотность метанола, (мг/л)/100%». Указывают: «Тип» — число, «Ключ» — «к_метанола», «Значение» — 7918 (это значение плотности метанола 791800 мг/л, деленное на 100%). Нажимают «Применить».

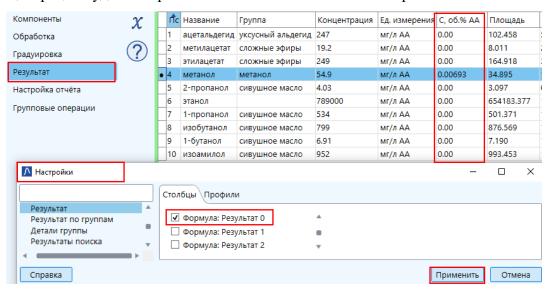

3. На верхней панели выбирают инструмент «Обработать по методу» и во всплывающем окне выбирают метод с градуировкой по ММВС, например, «Этанол внутр_станд РВ1».


- 4. В закладке «Компоненты» в таблице должны быть представлены все определяемые вещества, у них должен быть указан стандарт «этанол», ед.измерения мг/л АА. Заданная концентрация для этанола 789270.
- 5. Если функция у компонентов не определилась автоматически, то в ячейки столбца функции вводят коэффициенты $RRF_i^{^{9manon}}$, которые ранее были сохранены в файле отчета при определении градуировочных коэффициентов по методу MMBC.

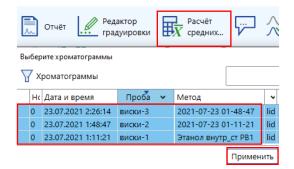
6. Добавляют в эту таблицу столбец, в котором будут пересчитываться значения концентрации метанола в ед. измерения об.% AA. В строке метанола задают функцию, кликнув на ячейку. В появившемся окне редактора формул раскрывают «Параметры компонента» - «Расчет» - «Концентрация» и нажимают на кнопку «Значение». В окне «Введите формулу» появится ссылка на концентрацию метанола в мг/л AA. Добавляют знак деления «/».

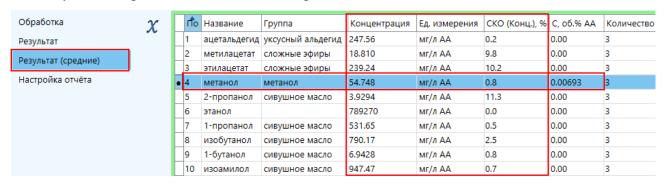


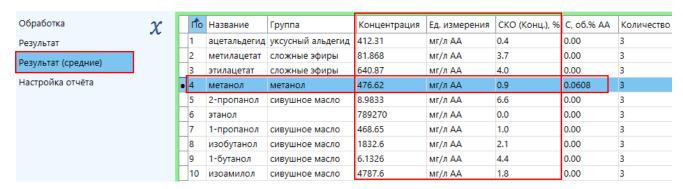
Затем вводят в качестве делителя заданный параметр «Плотность метанола, (мг/л)/100%). Для этого раскрывают «Параметры хроматограммы» - «Пользовательские поля» - «Плотность метанола, (мг/л)/100%», нажимают «Значение». В окне «Введите формулу»



Вычисление производится по формуле: $C_{\text{метанол}}^{\text{изм}}$ [%, v/ v AA] = $C_{\text{метанол}}^{\text{изм}} \cdot 100\%$ / $\rho_{\text{метанол}}$


7. Чтобы созданная формула вычислялась, в закладке «Обработка» добавляют процесс «Расчет по формулам пользователя». Процесс «Расчет разведения ССЖ» не нужен.


8. Переходят в закладку «Результат». Настраивают таблицу. Добавляют в неё столбец «Формула: Результат 0», переименовывают его как «С, об. «АА». В этом столбце для метанола концентрация будет отображаться в об. «АА. Нажимают «Применить» и «Расчёт».


9. Далее, переходят к последующим хроматограммам образцов алкогольной продукции. Применяют созданный способ обработки к полученным хроматограммам, нажимая кнопку «Обработать как предыдущую». Затем «Расчёт». Рассчитывают средние значения.

10. В результате появится окно «Результат (средние)» с таблицей, в которой приведены полученные средние значения концентрации и СКО,%

Результат анализа виски по ММВС с использованием градуировочного раствора РВ1

Результат анализа бренди по ММВС с использованием градуировочного раствора РВ1

Паспорта наборов ГСО 8405 (№51) и 8404 (№44)

Аттестованная характеристика	Аттестова	нное значение С	СО, мг/дм ³	№ пика на хромато-	Название летучего	Аттестованное значение концентрации, мг/л АА			
стандартного образца (СО)	PB-1	PB-2	PB-3	грамме	компонента	PB-1	PB-2	PB-3	
Массовая концентрация уксусного альдегида (ацетальдегида)	8.7	4.4	1.02	1	ацетальдегид	21.7500	11.0000	2.5500	
Массовая концентрация метилового эфира уксусной кислоты (метилацетата)	9.2	4.6	0.92	2	метилацетат	23.0000	11.5000	2.3000	
Массовая концентрация этилового эфира уксусной кислоты (этилацетата)	9	4.5	0.9	3	этилацетат	22.5000	11.2500	2.2500	
Массовая концентрация метилового спирта (метанола)	83.14	43.55	11.09	4	метанол	207.8475	108.8725	27.7130	
Массовая концентрация изопропилового спирта (2-пропанола)	8.5	4.5	1.36	5	2-пропанол	21.2500	11.2500	3.4000	
Массовая концентрация пропилового спирта (1-пропанола)	8	4	0.8	6	этанол	789270	789270	789270	
Массовая концентрация изобутилового спирта (2-метил-1-пропанола)	8	4	0.8	7	1-пропанол	20.0000	10.0000	2.0000	
Массовая концентрация бутилового спирта (1-бутанола)	8.1	4	0.81	8	изобутанол	20.0000	10.0000	2.0000	
Массовая концентрация изоамилового спирта (3-метил-1-бутанола)	8.1	4	0.81	9	1-бутанол	20.2500	10.0000	2.0250	
Объёмная доля метилового спирта (метанола), %	0.0105	0.0055	0.0014	10	изоамилол	20.2500	10.0000	2.0250	

Аттестованная характеристика	Аттестова	нное значение С	CO, мг/дм ³	№ пика на хромато-	Название летучего	Аттестованное значение концентрации, мг/л AA			
стандартного образца (СО)	PC-1	PC-2	PC-3	грамме	компонента	PC-1	PC-2	PC-3	
Массовая концентрация уксусного альдегида (ацетальдегида)	9.30	4.70	1.06	1	ацетальдегид	9.69	4.90	1.10	
Массовая концентрация метилового эфира уксусной кислоты (метилацетата)	9.20	4.60	0.92	2	метилацетат	9.58	4.79	0.96	
Массовая концентрация этилового эфира уксусной кислоты (этилацетата)	9.00	4.50	0.90	3	этилацетат	9.38	4.69	0.94	
Массовая концентрация метилового спирта (метанола)	81.56	41.97	10.29	4	метанол	84.95	43.71	10.72	
Массовая концентрация изопропилового спирта (2-пропанола)	9.00	5.10	2.00	5	2-пропанол	9.38	5.31	2.08	
Массовая концентрация пропилового спирта (1-пропанола)	8.00	4.00	0.80	6	этанол	789270	789270	789270	
Массовая концентрация изобутилового спирта (2-метил-1-пропанола)	8.00	4.00	0.80	7	1-пропанол	8.33	4.17	0.83	
Массовая концентрация бутилового спирта (1-бутанола)	8.10	4.00	0.81	8	изобутанол	8.33	4.17	0.83	
Массовая концентрация изоамилового спирта (3-метил-1-бутанола)	8.10	4.00	0.81	9	1-бутанол	8.44	4.17	0.84	
Объёмная доля метилового спирта (метанола), %	0.0103	0.0053	0.0013	10	изоамилол	8.44	4.17	0.84	