

OOO "Новые аналитические системы" New Analytical Systems, Ltd.

г. Минск, Беларусь unichrom@unichrom.com www.unichrom.com

Руководство:

"Синхронное создание методов градуировок и анализ образцов спиртосодержащей продукции по методу ГОСТ 30536 и модифицированному методу внутреннего стандарта (ММВС) в Agilent ChemStatition B.04.03"

Минск, 2025 г.

Оглавление

Аннот	гация	3
	ок сокращений и обозначений	
1. П	остроение градуировок по методу внешнего стандарта (по ГОСТ 30536) и модифицированно у внутреннего стандарта (ММВС)	ому
1.1.	Синхронное создание градуировок по ГОСТ 30536 и ММВС	6
1.2.	Результаты построения градуировочных зависимостей	9
2. Ко	онтроль линейности, анализ неопределенности, контроль точности	12
2.1.	Контроль линейности по ММВС	12
2.2.	Результаты контроля линейности отклика детектора по ММВС	13
2.3. при	Оценка статистических параметров при работе по ГОСТ 30536 в методе «Метод РВ ГОСТ мг_л работе по ММВС в методе «Этанол внутр_станд _РВ1»	
3. An	нализ образцов спиртосодержащей продукции	18
3.1. спир	Применение «Метод РВ ГОСТ мг_л» и «Этанол внутр_станд _РВ1» для анализа образ ртосодержащей продукции	
Пас	порта наборов ГСО 8405 (№51) и 8404 (№44)	20

Аннотация

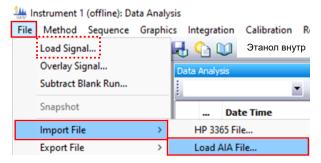
В лабораториях по контролю безопасности и качества алкогольной продукции наиболее часто выполняют испытания по ГОСТ 30536-2013 «Водка и спирт этиловый из пищевого сырья. Газохроматографический экспресс-метод определения содержания токсичных микропримесей». Этот способ включает выполнение калибровки прибора по методу внешнего стандарта – абсолютной градуировки. В соответствии с ГОСТ 30536-2013 установление градуировочной (калибровочной) характеристики прибора заключается в определении коэффициентов отклика детектора RF_i (Response Factor – RF) на каждый исследуемый i-й летучий компонент в зависимости от величины его концентрации в испытуемом образце. Для этого регистрируют хроматограммы градуировочных стандартных образцов (СО) PB-1, PB-2, PB-3 из набора ГСО 8405, предназначенного для анализа водок, или градуировочных СО РС-1, РС-2, РС-3 из набора ГСО 8404, предназначенного для анализа спирта этилового из пищевого сырья.

Определение количественного содержания летучих компонентов в алкогольной продукции при испытании по ГОСТ 30536-2013 и/или ММВС включает следующие этапы.

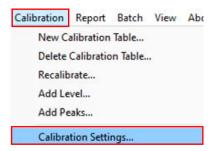
Этап 1. Регистрация хроматограмм набора градуировочных СО РВ-1, РВ-2, РВ-3 при анализе водки или набора градуировочных СО РС-1, РС-2, РС-3 при анализе спирта. Для каждого СО выполняют по 2-3 повторных измерения. Полный набор для установления градуировочной характеристики прибора, как правило, содержит 6-9 измеренных хроматограмм всего набора градуировочных растворов.

- <u>Этап 2.</u> Расчет калибровочных коэффициентов RF_i и RRF_i . Анализ неопределенности, контроль линейности отклика детектора.
- <u>Этап 3.</u> Регистрация хроматограмм образцов алкогольной продукции, по 2-3 повторных измерения.
- Этап 4. Расчет средних значений и формирование отчетов в соответствии с ГОСТ 30536-2013 и ММВС.

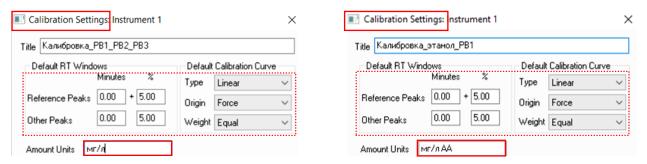
Следует отметить, что для работы по методу ММВС не требуется дополнительных измерений, анализ можно выполнять на основе хроматограмм, полученных при измерениях, выполненных при работе по ГОСТ 30536-2013.


.

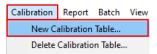
Список сокращений и обозначений

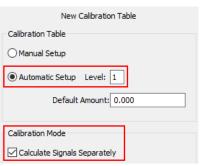

- AA безводный этиловый спирт (от англ. Anhydrous Alcohol или Absolute Alcohol);
- ММВС модифицированный метод внутреннего стандарта;
- ПИД пламенно-ионизационный детектор;
- СО стандартный образец (с известными аттестованными значениями концентрации компонентов);
- СКО стандартное отклонение в единицах измерения концентрации;
- ОСКО относительное стандартное отклонение, в %;
- ISTD внутренний стандарт (от англ. *Internal STanDard*);
- ESTD внешний стандарт (от англ. External STanDard);
- RF фактор отклика (от англ. Response Factor);
- RRF относительный фактор отклика (от англ. Relative Response Factor);
- $A_{i,j,k}$ величина отклика детектора на i-й компонент в j-м растворе, полученная в результате k-го измерения;
- $A_{i, {\rm калибр}, \, k}$ величина отклика детектора на i-й компонент в калибровочном СО при k-ом измерении;
- $A_{_{\mathit{этанол}}, \kappa$ алибровочном СО при k-ом измерении;
- $\tilde{C}_{i,j}^{ammecm}$ аттестованное значение концентрации i-го компонента в j-м растворе, в мг/л (мг/дм 3);
- $\tilde{C}_{i,j,k}^{\text{изм}}$ значение концентрации *i*-го компонента в СО с уровнем концентрации *j*, рассчитанное по данным *k*-го хроматографического измерения, в мг/л (мг/дм³);
- $\langle \tilde{C} \rangle_{i,j}^{{\scriptscriptstyle \mathit{USM}}}$ среднее значение концентрации i-го компонента в j-м растворе, полученное в результате M повторных хроматографических измерений, в мг/л (мг/дм³);
- $C_{i,\text{калибр}}^{ammecm}$ аттестованное значение концентрации i-го компонента в калибровочном СО, в мг/л AA;
- $C_{i,j}^{\it ammecm}$ аттестованное значение концентрации i-го компонента в СО с уровнем концентрации j, выраженное в мг/л AA;
- $C_{i,j,k}^{u_{3M}}$ значение концентрации i-го компонента в j-м растворе, рассчитанное по данным k-го хроматографического измерения, в мг/л AA;
- $\langle C \rangle_{i,j}^{{\scriptscriptstyle HSM}}$ среднее значение концентрации i-го летучего компонента в j-м растворе, полученное в результате M повторных измерений, в мг/л AA;
- C_p значение линейного коэффициента корреляции Пирсона;
- i индекс, показывающий номер летучего компонента (i = 1, ..., 10);
- j индекс, показывающий номер концентрационного уровня СО (для контрольного образца и для образцов спиртосодержащей продукции он не указывается);

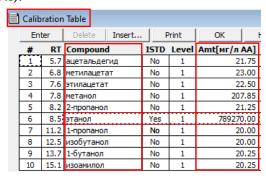
- k индекс, показывающий номер повторного измерения раствора;
- "калибр" индекс, указывающий, что раствор используется в качестве калибровочного при работе по MMBC;
- M число измерений СО с определенным уровнем концентрации (j или «калибр»);
- N количество разных уровней концентрации;
- \tilde{R}_{i}^{2} и R_{i}^{2} коэффициенты детерминации при линейной апроксимации в методах ГОСТ и ММВС;
- $R\tilde{F}_{i,j,k}$ (в таблицах в ChemStation B.04.03 обозначается как «Rsp.Factor») отношение аттестованного значения концентрации к площади пика («Amount/Area») для i-го летучего компонента в j-ом CO, полученное при k-ом измерении;
- $R\tilde{F}_i$ градуировочный коэффициент RF для компонента i, в размерности (мг/л)/ед. площади пика, рассчитываемый на основе результатов, полученных для всех измерений всех градуировочных образцов (характеристика линейной зависимости, если оси: X Area, Y Amount);
- $R\tilde{F}_{i}^{o\delta p}$ градуировочный коэффициент для компонента i, в размерности ед.площади пика/(мг/л) (характеристика линейной зависимости, если оси: X Amount, Y Area);
- $RRF_i^{\ 3manon_oбp}$ градуировочный коэффициент для компонента i при использовании этанола качестве ISTD, безразмерная величина (X Amount Ratio, Y Area Ratio);
- $RRF_i^{_{imahon}}$ градуировочный коэффициент RRF для компонента i при использовании этанола в качестве ISTD, безразмерная величина (X Area Ratio, Y Amount Ratio);
- X (ось Amount или Amount Ratio) ось значений концентраций ($\tilde{C}_{i,j}^{ammecm}$ в мг/л, в методе ГОСТ) или отношения концентраций ($C_{i,j}^{ammecm}$ / $\rho_{smano\pi}$, в MMBC) в ChemStation B.04.03;
- Y (ось Area или Area Ratio) ось значений площади пиков ($A_{i,j,k}$, ед. площади пика, в методе ГОСТ) или отношения площадей ($A_{i,j,k}$ / $A_{{\it этанол},j,k}$, в MMBC) в ChemStation B.04.03;
- $\delta_{i,j}$,% величина смещения метода, рассчитанная для i-го компонента и концентрационного уровня j;
- $\rho_{\text{этанол}}$ значение концентрации этанола в растворе, выраженное в мг/л AA, равно значению плотности безводного этанола (789270 мг/л при температуре 20 °C);
- $\tilde{\sigma}_{i,j}$ СКО, рассчитанное для i-го компонента и j-го концентрационного уровня (в мг/л);
- $\sigma_{i,j}$ СКО, рассчитанное для i-го компонента и j-го концентрационного уровня (в мг/л AA);
- $\sigma_{i,j}$,% ОСКО, рассчитанное для i-го компонента и j-го концентрационного уровня.


- 1. Построение градуировок по методу внешнего стандарта (по ГОСТ 30536) и модифицированному методу внутреннего стандарта (ММВС)
 - 1.1. Синхронное создание градуировок по ГОСТ 30536 и ММВС
 - 1.1.1. Регистрируют хроматограммы градуировочных СО (например, PB-1, PB-2, PB-3 из набора ГСО 8405).
 - 1.1.2. В главном меню программы ChemStation B.04.03 нажимают «Method» и далее «Load Method...».
 - 1.1.3. В раскрывшемся списке выбирают любой метод и сохраняют его под новым именем: например, «Метод РВ ГОСТ мг_л» в случае работы по ГОСТ 30536 или «Этанол внутр_станд _РВ1» в случае работы по ММВС и использования этанола в качестве внутреннего стандарта.
 - 1.1.4. Добавляют комментарий для контрольного журнала «Comment for the audit trail».
 - 1.1.5. В главном меню нажимают «File» и «Load Signal...» в списке для собственных данных ChemStation. Однако если файлы измеренных хроматограмм имеют формат *.cdf, то нажимают «Import File» и «AIA File...». Открывают файл первой хроматограммы CO (PB-1-1).

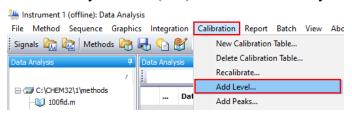
- 1.1.6. Размечают и интегрируют пики летучих соединений в хроматограмме (ацетальдегида, метилацетата, этилацетата, метанола, 2-пропанола, этанола, 1-пропанола, изобутанола, 1-бутанола, изоамилола).
- 1.1.7. Нажимают в главном меню «Calibration» и далее в списке «Calibration Setting...».




1.1.8. Заполняют строки ввода в диалоговом окне «Calibration Setting». Устанавливают "Туре" (Lineal), "Origin" (Force), "Weight" (Equal) и другие параметры, как показано на снимке экрана. Заполняют ячейку "Amount Units": мг/л в случае метода «Метод РВ ГОСТ мг_л» и мг/л АА в случае метода «Этанол внутр_станд РВ1». Нажмают кнопку «ОК».


"Amount Units": мг/л в методе «Метод РВ ГОСТ мг л» и мг/л AA в методе «Этанол внутр_станд РВ1»

1.1.9. Нажимают «New calibration table» в «Calibration». Устанавливают «Level»: 1, «Calibration Mode» – «Calculate Signals Separately», как показано на снимке экрана. Нажимают кнопку «ОК».




1.1.10. Вводят названия компонентов в столбце «Compound» и аттестованные (паспортные) значения их концентрации в ячейки столбца «Amt[мг/л]» или «Amt[мг/л AA]». Эти значения далее будут обозначаться как $\tilde{C}_{i,j}^{ammecm}$ (мг/л) в случае работы по ГОСТ 30536 и $C_{i,\text{калибр}}^{ammecm}$ (мг/л AA) в случае работы по ММВС с использованием этанола как ISTD — значения концентрации летучего i-го компонента ($i=1,\ldots,10$) в определенном калибровочном растворе. Концентрация этанола в мг/л AA равна плотности этанола ($\rho_{эmанол}=789270$ мг/л).

- 1.1.11. В методе «Этанол внутр_станд PB1» при работе по MMBC отмечают этанол как внутренний стандарт, устанавливая «Yes» в ячейке столбца «ISTD» строки этанола.
- 1.1.12. Для определения калибровочных коэффициентов необходимо добавить всего по 3 реализации для каждого калибровочного раствора. При этом при работе по ГОСТ используется 3 калибровочных СО (PB-1, PB-2, PB-3) и для них при повторных измерениях получают 9 хроматограмм (PB-1-1, PB-1-2, PB-1-3, PB-2-1, PB-2-2,),

- данные которых необходимо добавить в калибровочную таблицу как уровни 1, 2, ..., 9.
- 1.1.13. В главном меню нажимают «File» и «Load Signal...» в списке для собственных данных ChemStation. Если же файлы измеренных хроматограмм имеют формат *.cdf, то нажимают «Import File» и «AIA File...». Открывают файл второй хроматограммы CO (PB-1-2).
- 1.1.14. Нажимают «Add Level...» в «Calibration». Вводят значение номера хроматограммы в ячейку «Level» («2»). Нажимают кнопку «ОК».

- 1.1.15. В калибровочной таблице заполняют значения концентрации для всех компонентов путем копирования значений из ячеек первой измеренной хроматограммы в ячейки второй хроматограммы калибровочного раствора.
- 1.1.16. Для третьего повторного измерения хроматограммы калибровочного раствора необходимо повторить действия как в 1.1.13-1.1.15, создавая 3-й уровень в калибровочной таблице.
- 1.1.17. При работе по ГОСТ 30536 методу внутреннего стандарта с использованием трёх калибровочных СО с тремя уровнями концентрации, в методе «Метод РВ ГОСТ мг_л» в калибровочную таблицу вносят данные, полученные для остальных калибровочных СО, последовательно открывая файлы хроматограмм, добавляя уровни 4-9 и внося паспортные (аттестованные) значения концентраций, как описано выше.

#	RT Compound		Lvl	Amt[мг/л]	ISTD
1	5.750	ацетальдегид	7	1.020	No
			8	1.020	
			9	1.020	
			4	4.400	
			5	4.400	
			6	4.400	
			1	8.700	
			2	8.700	
			3	8.700	
2	6.792	метилацетат	7	0.920	No
			8	0.920	
			9	0.920	
			4	4.600	
			5	4.600	
			6	4.600	
			1	9.200	
			2	9.200	
			3	9.200	
3	7.621	этилацетат	7	0.900	No
			8	0.900	
			9	0.900	
			4	4.500	
			5	4.500	
			6	4.500	
			1	9.000	
			2	9.000	
			2	0.000	

#	RT Compound		Lvl	Amt[мг/л]	ISTD
4	7.784	метанол	7	11.090	No
			8	11.090	
			9	11.090	
			4	43.500	
			5	43.500	
			6	43.500	
			1	83.100	
			2	83.100	
			3	83.100	
5	8.248	2-пропанол	7	1.360	No
			8	1.360	
			9	1.360	
			4	4.500	
			5	4.500	
			6	4.500	
			1	8.500	
			2	8.500	
			3	8.500	
7	11.201	1-пропанол	7	0.800	No
			8	0.800	
			9	0.800	
			4	4.000	
			5	4.000	
			6	4.000	
			1	8.000	
			2	8.000	
			3	8.000	

#		Compound	Lvl	Amt[мг/л]	ISTD
8	12.512	изобутанол	7	0.800	No
			8	0.800	
			9	0.800	
			4	4.000	
			5	4.000	
			6	4.000	
			1	8.000	
			2	8.000	
			3	8.000	
9	13.755	1-бутанол	7	0.810	No
			8	0.810	
			9	0.810	
			4	4.000	
			5	4.000	
			6	4.000	
			1	8.100	
			2	8.100	
			3	8.100	
10	15.115	изоамилол	7	0.810	No
			8	0.810	
			9	0.810	
			4	4.000	
			5	4.000	
			6	4.000	
			1	8.100	
			2	8.100	
			3	8.100	

Калибровочная таблица в методе «Метод РВ ГОСТ мг л» по набору СО (РВ1, РВ2, РВ3)

1.1.18. В методе «Этанол внутр_станд PB1» при работе по MMBC достаточно использовать один раствор для калибровки (например, CO PB-1) и для него в калибровочную таблицу вносится лишь три уровня, соответствующие 3-м повторным измерениям

#	RT	Compound	Lvl	Amt[мг/л AA]	ISTD	Area	Rsp.Factor
1	5.748	ацетальдегид	1	21.750	No	1132.300	1.92e-2
			2	21.750		1085.700	2.00e-2
			3	21.750		1172.900	1.85e-2
2	6.790	метилацетат	1	23.000	No	1222.600	1.88e-2
			2	23.000		1177.500	1.95e-2
			3	23.000		1255.600	1.83e-2
3	7.624	этилацетат	1	22.500	No	1817.300	1.2 4e -2
			2	22.500		1765.200	1.27e-2
			3	22.500		1843.000	1.22e-2
4	7.780	метанол	1	207.850	No	16717.000	1.2 4e -2
			2	207.850		15910.000	1.31e-2
			3	207.850		17390.000	1.20e-2
5	8.253	2-пропанол	1	21.250	No	2077.500	1.02e-2
			2	21.250		1971.600	1.08e-2
			3	21.250		2157.600	9.85e-3
6	8.549	этанол	1	789270.000	Yes	8.3545e7	9.45e-3
			2	789270.000		7.9677e7	9.91e-3
			3	789270.000		8.6496e7	9.12e-3
7	11.206	1-пропанол	1	20.000	No	2396.200	8.35e-3
			2	20.000		2261.800	8.84e-3
			3	20.000		2422.000	8.26e-3
8	12.523	изобутанол	1	20.000	No	2779.600	7.20e-3
			2	20.000		2636.700	7.59e-3
			3	20.000		2869.200	6.97e-3

одного градуировочного уровня (РВ-1-1, РВ-1-2, РВ-1-3).

Калибровочная таблица в методе «Этанол внутр станд PB1» по одному СО PB1

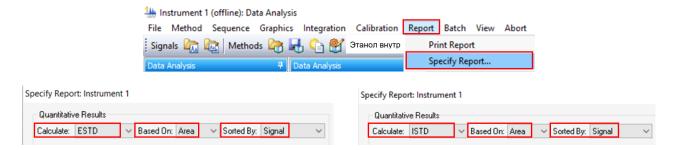
1.1.19. Необходимо указать используется ли для расчетов метод внутреннего стандарта (ESTD) либо метод внешнего стандарта (ISTD). Для этого в главном меню нажимают "Report" и затем "Specify Report...". Далее в "Quantitative Results" указывают "Calculate" – "ESTD" и "Based on" – "Area"при работе по ГОСТ 30536 в методе «Метод РВ ГОСТ мг_л». Но при работе по ММВС в методе «Этанол внутр_станд РВ1» указывают "Calculate" – "ISTD" и "Based on" – "Area".

20.250

20.250

20.250

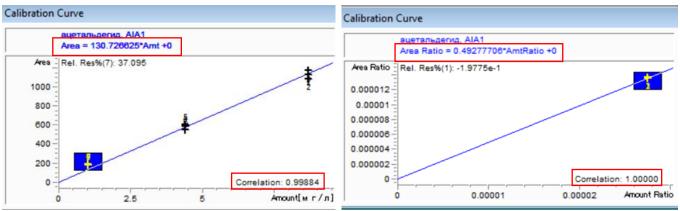
2660.800


2535,200

2760,200

2672.300

7.99e-3


7.58e-3

1.2. Результаты построения градуировочных зависимостей

1.2.1. В окне "Calibration curve" в методе «Метод РВ ГОСТ мг_л» для каждого компонента i (i=1,...,10) показывается калибровочная кривая $Y=R\tilde{F}_{i}^{ofp}\cdot X$, представляющая собой линейную зависимость значений Y (отклик ПИД — площадь пика на хроматограмме $A_{i,j,k}$, в ед.площади) от значений X (аттестованное значение концентрации $\tilde{C}_{i,j}^{ammecm}$, в мг/л). Это многоуровневая градуировка, где j=1,2,3. Коэффициенты $R\tilde{F}_{i}^{ofp}$ вычисляются на основе всех девяти хроматограмм, полученных для всех трёх

- калибровочных СО. Для просмотра зависимости для конкретного компонента i нажимают на ячейку с его названием в калибровочной таблице.
- 1.2.2. В окне диаграммы "Calibration curve" в методе «Этанол внутр_станд РВ1» для каждого летучего компонента i (i=1,...,10) показывается калибровочная кривая $Y = RRF_i^{\frac{3manon_oбp}{i}} \cdot X$, представляющая собой линейную зависимость значений параметра Y (отношение откликов ПИД, полученных для i-го летучего соединения и этанола как внутреннего стандарта, $A_{i,\text{калибр},k} / A_{\frac{3manon,\text{калибр},k}{i}}$ от параметра X (отношение количеств i-го летучего соединения и этанола, $C_{i,\text{калибр}}^{ammecm} / \rho_{\frac{3manon}{i}}$). Это одноуровневая градуировка (j= калибр). Коэффициенты $RRF_i^{\frac{3manon_oбp}{i}}$ вычисляются на основе трёх повторных хроматограмм, полученных для одного калибровочного СО.

Калибровочные зависимости в методах «Метод РВ ГОСТ мг_л» (3 градуировочных СО: РВ1, РВ2, РВ3) и «Этанол внутр_станд РВ1» (1 градуировочный СО: РВ1)

1.2.3. Формулы, согласно которым рассчитываются значения градуировочных коэффициентов $R\tilde{F}_{i}^{ofp}$ и $RRF_{i}^{omahon_ofp}$ следующие:

$$R\tilde{F}_{i}^{oбp} = \frac{\sum\limits_{j=1}^{N}\sum\limits_{k=1}^{M} \left(\tilde{C}_{i,j}^{ammecm} \cdot A_{i,j,k}\right)}{M \cdot \sum\limits_{j=1}^{N} \left(\tilde{C}_{i,j}^{ammecm}\right)^{2}} \tag{1}, \qquad RRF_{i}^{\textit{этанол}_\textit{oбp}} = \frac{\sum\limits_{k=1}^{M} \left(A_{i,\text{калибр},k} \ / \ A_{\textit{этанол},\text{калибр},k}\right)}{M \cdot \left(C_{i,\text{калибр}}^{\textit{ammecm}} \ / \ \rho_{\textit{этанол}}\right)} \tag{2},$$

где:

X (ось Amount или Amount Ratio) — ось значений концентраций ($\tilde{C}_{i,j}^{ammecm}$ в мг/л, при работе по ГОСТ) или отношения концентраций ($C_{i,k}^{ammecm}$ / ρ_{amanon} , при работе по MMBC) в ChemStation B.04.03; Y (ось Area или Area Ratio) — ось значений площади пиков ($A_{i,j,k}$, в ед.площади, при работе по ГОСТ) или отношения площадей пиков ($A_{i,k,k}$ / $A_{amanon,k,k,k}$, в MMBC) в ChemStation B.04.03; $A_{i,j,k}$ — величина отклика детектора на i-й компонент в j-м растворе, полученная при k-ом измерении; $A_{i,k,k,k,k}$ — величина отклика детектора на i-й компонент в калибровочном СО при k-ом измерении; $A_{amanon,k,k,k,k,k}$ — величина отклика детектора на этанол в калибровочном СО при k-ом измерении; $\tilde{C}_{i,j}^{ammecm}$ — аттестованное значение концентрации i-го компонента в j-м растворе, в мг/л (мг/дм³);

 $C_{i, {\rm калибр}}^{\it ammecm}$ — аттестованное значение концентрации i-го компонента в калибровочном СО, в мг/л AA;

 $C_{i,j}^{ammecm}$ – аттестованное значение концентрации *i*-го компонента в СО с уровнем концентрации *j*, выраженное в мг/л AA;

 $R\tilde{F}_{i}^{o\delta p}$ — градуировочный коэффициент для компонента i, в ед.площади пика/(мг/л) (оси: X - Amount, Y - Area);

M – число измерений СО с уровнем концентрации j;

N – количество уровней концентрации СО;

 C_p (correlation) — значение линейного коэффициента корреляции Пирсона;

 $\rho_{\text{этанол}}$ — значение концентрации этанола в СО, выраженное в мг/л AA, равно табличному значению плотности безводного этанола (789270 мг/л при температуре 20 °C);

i	Компонент	$R ilde{F}_i^{o oldsymbol{o} p},$ ед.площади/(мг/л)	$1/R ilde{F}_{i}^{o\delta p}$, (мг/л)/ед.площади	$RRF_i^{{\scriptscriptstyle >\! maho}{\scriptscriptstyle N}}$ _обр	$1/RRF_i^{\circ manon_oбp}$
1	ацетальдегид	130.77	0.00765	0.4928	2.029
2	метилацетат	131.34	0.00761	0.5025	1.990
3	этилацетат	197.81	0.00506	0.7625	1.311
4	метанол	197.77	0.00506	0.7605	1.315
5	2-пропанол	240.57	0.00416	0.9231	1.083
6	этанол	252.06	0.00397	1.0000	1.000
7	1-пропанол	292.14	0.00342	1.1191	0.894
8	изобутанол	391.93	0.00292	1.3093	0.764
9	1-бутанол	324.84	0.00308	1.2418	0.805
10	изоамилол	328.71	0.00304	1.2510	0.799

 C_p (correlation) > 0.9988

 C_p (correlation) > 0.9998

1.2.4. При противоположном выборе осей координат для построения линейных зависимостей формулы, согласно которым рассчитываются значения коэффициентов пропорциональности $R\tilde{F}_i$ и $RRF_i^{\textit{этванол}}$, следующие:

$$R\tilde{F}_{i} = \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\tilde{C}_{i,j}^{ammecm} \cdot A_{i,j,k} \right)}{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(A_{i,j,k} \right)^{2}} \approx \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} R\tilde{F}_{i,j,k}}{M \cdot N} \approx 1 / R\tilde{F}_{i}^{o\delta p}$$
(3),

$$RRF_{i}^{\,\,\text{этанол}} = \frac{C_{i,\text{калибр}}^{\,\,\text{аттест}} \cdot \sum_{k=1}^{M} \left(A_{i,\text{калибр},\,k} \, / \, A_{\,\,\text{этанол},\text{калибр},\,k}\right)}{\rho_{\,\,\text{этанол}} \cdot \sum_{k=1}^{M} \left(A_{i,\text{калибр},\,k} \, / \, A_{\,\,\text{этанол},\text{калибр},\,k}\right)^{2}} \approx \frac{1}{M} \cdot \sum_{k=1}^{M} \left(\frac{RF_{i,\text{калибр},\,k}}{RF_{\,\,\text{этанол},\text{калибр},\,k}}\right) \approx 1 \, / \, RRF_{i}^{\,\,\text{этанол}\,\,\text{обр}} \tag{4},$$

где:

 $R\tilde{F}_{i,j,k}$ (Rsp.Factor) — отношение Amount/Area для вещества i в j-ом CO, полученное при измерении k; $R\tilde{F}_i$ — RF для компонента i, в (мг/л)/ед. площади, вычисленный на основе всех калибровочных CO; $RRF_i^{\text{-smanon}}$ — RRF для компонента i (этанол — ISTD, оси: X - Area Ratio, Y - Amount Ratio).

2. Контроль линейности, анализ неопределенности, контроль точности

2.1. Контроль линейности по ММВС

- 2.1.1. Контроль линейности отклика ПИД можно выполнять с применением N растворов с аттестованными значениями концентрации (уровни концентрации j, j=1, ..., N), не использованных при определении градуировочных коэффициентов RRF. Например, если градуировка выполнялась на основе измерений PB-1, то можно использовать CO PB-2 и PB-3, а также PB-1 из другого набора, или же PB-2, PB-3, PC-1, PC-2, PC-3.
- 2.1.2. В главном меню программы ChemStation B.04.03 нажимают «Method» и далее «Load Method...». В раскрывшемся списке выбирают метод «Этанол внутр_станд _PB1» и сохраняют его под новым именем: например, «Этанол линейность PB1_2_3» или «Этанол линейность PB2_3_PC1_2_3». Добавляют комментарий для контрольного журнала «Comment for the audit trail».
- 2.1.3. В главном меню нажимают «File» и «Load Signal...» в списке для собственных данных ChemStation. Однако если файлы измеренных хроматограмм имеют формат *.cdf, то нажимают «Import File» и «AIA File...». Открывают файл первой хроматограммы j-го CO (j = 1, «PB-2-1»).
- 2.1.4. Размечают и интегрируют пики летучих соединений в хроматограмме (ацетальдегида, метилацетата, этилацетата, метанола, 2-пропанола, этанола, и др.).
- 2.1.5. Затем последовательно открывают другие хроматограммы растворов, используемых для контроля линейности отклика детектора, соответствующие концентрационным уровням j (j =1, ..., N), и заполняют калибровочную таблицу по аналогии с тем, как описано в п.1.1. Всего в калибровочной таблице получится $N \times M$ уровней, где N количество уровней концентрации CO, M число измерений CO с уровнем концентрации j.

	bration Ta	hle							Г	$R ilde{F}_{i,j,k}$
									1	$K \Gamma_{i,j,k}$
Ent	ter 🛭)elete	Insert	F	rint	OK		Help	L	
#	RT	Compo	ound	Lvl	Amt[N	іг/л АА]	ISTD	Ar A	ea	Rsp.Factor
6	8.549	этанол		1	78	9270.000	Yes	7.5391	le7	1.047e-2
				2	78	9270.000		7.6643	3e7	1.030e-2
				3	78	9270.000		7.6548	3e7	1.031e-2
				4	78	9270.000		7.8065	ie7	1.011e-2
				5	78	9270.000		7.6130)e7	1.037e-2
				6	78	9270.000		7.6130)e7	1.037e-2
				7	78	9270.000		8.3545	ie7	9.447e-3
				8	78	9270.000		7.9677	7e7	9.906e-3
				9	78	9270.000		8.6496	ie7	9.125e-3
7	11.206	1-пропа	энол	1		2.000	No	207.1	150	9.655e-3
				2		2.000		220.3	340	9.077e-3
				3		2.000		227.8	370	8.777e-3
				4		10.000		1145.6	500	8.729e-3
				5		10.000		1048.9	900	9.534e-3
				6		10.000		1048.9	900	9.534e-3
				7		20.000		2396.2	200	8.347e-3
				8		20.000		2261.8	300	8.842e-3
				9		20.000		2422.0	000	8.258e-3
8	12.523	изобута	анол	1		2.000	No	227.1	190	8.803e-3
				2		2.000		228.7	770	8.743e-3
				3		2.000		307.1	190	6.511e-3
				4		10.000		1301.0	000	7.686e-3
				5		10.000		1252.6	500	7.984e-3
				6		10.000		1252.6	500	7.984e-3
				7		20.000		2779.6	500	7.195e-3
				8		20.000		2636.7	700	7.585e-3
				9		20.000		2869.2	200	6.971e-3

2.2. Результаты контроля линейности отклика детектора по ММВС

Одна из линейных зависимостей в методе: «Этанол линейность PB1 2 3»

2.2.2. Значения $RRF_i^{_{3mahon_oбp}}$ вычисляются на основе общего числа $N \times M$ хроматограмм, полученных для N растворов CO, используемых для контроля линейности, для которых выполнено по M повторных измерения, согласно формуле:

$$RRF_{i}^{\text{3manon_oбp}} = \frac{\sum_{j=1}^{N} \sum_{k=1}^{M} \left(\left(C_{i,j}^{\text{ammecm}} / \rho_{\text{3manon}} \right) \cdot \left(A_{i,j,k} / A_{\text{3manon,j,k}} \right) \right)}{M \cdot \sum_{i=1}^{N} \left(C_{i,j}^{\text{ammecm}} / \rho_{\text{3manon}} \right)^{2}}$$
(5),

где:

X (Amount Ratio) — ось отношения концентраций ($C_{i,j}^{ammecm}$ / $ho_{\tiny этанол}$) в ChemStation B.04.03;

Y (Area Ratio) — ось отношения площадей пиков ($A_{i,j,k}$ / $A_{_{3mahon,j,k}}$) в ChemStation B.04.03;

 $A_{i,j,k}$ — величина отклика детектора на i-й компонент в j-м растворе, полученная в результате k-го измерения;

 $A_{_{2 mano n, j, k}}$ – величина отклика детектора на этанол в j-м растворе при k-ом измерении;

 $C_{i,j}^{ammecm}$ — аттестованное значение концентрации i-го компонента в СО с уровнем концентрации j, выраженное в мг/л AA;

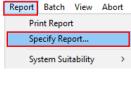
M – число повторных измерений СО с уровнем концентрации j;

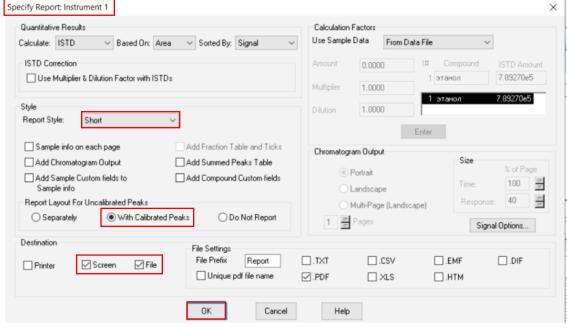
N – количество уровней концентрации CO;

 $\rho_{\text{этанол}}$ — значение концентрации этанола в CO, выраженное в мг/л AA, равно табличному значению плотности безводного этанола (789270 мг/л при температуре 20 °C).

i	Компонент	$RRF_i^{{\scriptscriptstyle >\! maho_{\scriptstyle n}}}$ _обр	$1/RRF_i^{\mathit{этанол_обр}}$
1	ацетальдегид	0.5019	1.992
2	метилацетат	0.5032	1.987
3	этилацетат	0.7554	1.324
4	метанол	0.7575	1.320
5	2-пропанол	0.9227	1.084
6	1-пропанол	1.1176	0.895
7	изобутанол	1.3084	0.764
8	1-бутанол	1.2433	0.804
9	изоамилол	1.2604	0.793

2.2.3. Оценку качества линейной аппроксимации в программе ChemStation B.04.03 проводят на основе анализа коэффициентов линейной корреляции C_p (correlation), которые также отражаются в окне «Calibration curve» снизу.


Значения коэффициентов линейной корреляции C_p (correlation), полученные в методе «Этанол линейность PB1_2_3» при использовании этанола как ISTD и при работе по ГОСТ 30536 (ESTD)


i	Компонент	C_p (Этанол ISTD)	C_p (ESTD)
1	ацетальдегид	0.99854	0.99884
2	метилацетат	0.99992	0.99942
3	этилацетат	0.99967	0.99906
4	метанол	0.99993	0.99893
5	2-пропанол	0.99998	0.99901
6	1-пропанол	0.99986	0.99922
7	изобутанол	0.99991	0.99905
8	1-бутанол	0.99999	0.99919
9	изоамилол	0.99982	0.99937

2.3. Оценка статистических параметров при работе по ГОСТ 30536 в методе «Метод РВ ГОСТ мг_л» и при работе по ММВС в методе «Этанол внутр_станд_РВ1»

- 2.3.1. В главном меню программы ChemStation B.04.03 нажимают «Method» и далее «Load Method...». В раскрывшемся списке выбирают «Метод РВ ГОСТ мг_л» в случае работы по ГОСТ 30536 или «Этанол внутр_станд _PB1» в случае работы по ММВС и использования этанола в качестве внутреннего стандарта.
- 2.3.2. В главном меню нажимают «File» и «Load Signal...» в списке для собственных данных ChemStation. Однако если файлы измеренных хроматограмм имеют формат *.cdf, то нажимают «Import File» и «AIA File...». Открывают файл первой хроматограммы контрольного СО (например, PB-1 из набора, не использованного для создания груировки).
- 2.3.3. Размечают и интегрируют пики летучих соединений в хроматограмме контрольного CO (ацетальдегида, метилацетата, этилацетата, метанола, 2-пропанола, этанола, 1-пропанола, изобутанола, 1-бутанола, изоамилола).
- 2.3.4. Расчет значений концентрации летучих соединений в анализируемом образце производится при создании отчета. Необходимо указать используется ли для расчетов метод внутреннего стандарта (ESTD) либо метод внешнего стандарта (ISTD). Для

этого в главном меню нажимают "Report" и затем "Specify Report...". Далее в "Quantitative Results" указывают "Calculate" – "ESTD" и "Based on" – "Area"при работе по ГОСТ 30536 в методе «Метод РВ ГОСТ мг_л». Но при работе по ММВС в методе «Этанол внутр станд РВ1» указывают "Calculate" – "ISTD" и "Based on" – "Area".

2.3.5. Далее, нажимают "Report" и "Print Report" и сохраняют созданный файл отчёта по данному измерению контрольного СО. Затем повторяют указанные действия для других повторных измерений контрольного СО в обоих методах «Метод РВ ГОСТ мг л» и «Этанол внутр станд _PB1».

			$R ilde{F}_i$							$RRF_i^{{}_{\scriptscriptstyle{j}}}$	Л	
RetTime	Type	Area	Amt/Area	Amount	Grp Name	RetTime	Type	ISTD	Area	Amt/Area	Amount	Grp Name
[min]		[V*s]		[мг/л]		[min]		used	[V*s]	ratio	[мг/л АА]	
								ļi				
5.735	BB	1132.26355	7.64955e-3	8.66131	ацетальдегид	5.735	BB	1	1132.26355	2.02932	21.70699	ацетальдегид
6.774	BB	1222.58362	7.61357e-3	9.30822	метилацетат	6.774	BB	1	1222.58362	1.99008	22.98542	метилацетат
7.602	BB	1817.27209	5.05527e-3	9.18680	этилацетат	7.602	BB	1	1817.27209	1.31142	22.51462	этилацетат
7.757	BB	1.67171e4	5.05629e-3	84.52650	метанол	7.757	BB	1	1.67171e4	1.31493	207.66585	метанол
8.227	BB	2077.50293	4.15687e-3	8.63592	2-пропанол	8.227	BB	1	2077.50293	1.08335	21.26241	2-пропанол
8.518	BB	8.35455e7	3.96735e-3	3.31454e5	этанол	8.518	BB I	1	8.35455e7	1.00000	7.89270e5	этанол
11.183	BB	2396.15234	3.42304e-3	8.20212	1-пропанол	11.183	вв	1	2396.15234	8.93610e-1	20.22855	1-пропанол
12.502	BB	2779.58057	2.92455e-3	8.12901	изобутанол	12.502	BB	1	2779.58057	7.63748e-1	20.05542	изобутанол
13.751	BB	2660.82056	3.07846e-3	8.19122	1-бутанол	13.751	BB	1	2660.82056	8.05304e-1	20.24315	1-бутанол
15.109	BB	2672.31812	3.04220e-3	8.12971	изоамилол	15.109	BB	1	2672.31812	7.99376e-1	20.18096	изоамилол

Отчёты для одного из измерений контрольного СО в методах «Метод РВ ГОСТ мг_л» и «Этанол внутр_станд _PB1» (ISTD used)

2.3.6. Таблица отчёта содержит результаты со значениями измеренной концентрации для каждого компонента в контрольном образце «Amount»: $\tilde{C}_{i,k}^{uzw}$ в мг/л при работе по ГОСТ 30536 («Метод РВ ГОСТ мг_л») или $C_{i,k}^{uzw}$ в мг/л АА при работе по ММВС («Этанол внутр_станд _PB1»), а также значения градуировочных параметров $R\tilde{F}_i$ («Аmt/Area») и RRF_i^{smanon} («Amt/Area ratio»), используемые в этих методах (их расчёт описан в п.1). На основе хроматограмм, измеренных в условиях повторяемости, рассчитывают средние значения измеренной концентрации в контрольном образце $\langle \tilde{C} \rangle_i^{uzw}$ в мг/л при работе по ГОСТ 30536 («Метод РВ ГОСТ мг_л») или $\langle C \rangle_i^{uzw}$ в мг/л АА при работе по ММВС («Этанол внутр_станд _PB1»). Формулы, согласно которым вычисляются значения концентрации в контрольном образце по результатам измерения хроматограмм, следующие:

$$\begin{split} \tilde{C}_{i,k}^{u_{3M}} &= R\tilde{F}_i \cdot A_{i,k} \ (6); \\ \left\langle \tilde{C} \right\rangle_i^{u_{3M}} &= \left(\sum_{k=1}^M \tilde{C}_{i,k}^{u_{3M}} \right) / M \ \ (7); \\ C_{i,k}^{u_{3M}} &= RRF_i^{9mahon} \cdot \rho_{9mahon} \cdot \left(A_{i,k} / A_{9mahon,k} \right) \ (8); \\ \left\langle C \right\rangle_i^{u_{3M}} &= \left(\sum_{k=1}^M C_{i,k}^{u_{3M}} \right) / M \ \ (9); \end{split}$$

где:

 $R ilde{F}_i$ — градуировочный коэффициент RF для компонента i, в ед.площади пика/(мг/л);

 $A_{i,k}$ — величина отклика детектора на i-й компонент, полученная в результате k-го измерения;

 $A_{_{\mathit{этанол},k}}$ – величина отклика детектора на этанол при k-ом измерении;

M – число измерений образца;

 $\rho_{\text{этанол}}$ — значение концентрации этанола в СО, выраженное в мг/л АА, равно табличному значению плотности безводного этанола (789270 мг/л при температуре 20 °C);

2.3.7. На основе данных, полученных в условиях повторяемости, для контрольного образца рассчитывают СКО ($\tilde{\sigma}_i$ в мг/л или σ_i в мг/л АА) и ОСКО в % (σ_i , %) для оценки неопределенности метода и величину смещения (δ_i ,%) для оценки правильности (точности) метода по формулам:

$$\tilde{\sigma}_{i} = \sqrt{\sum_{k=1}^{M} \frac{\left(\tilde{C}_{i,k}^{u_{3M}} - \langle \tilde{C} \rangle_{i}^{u_{3M}}\right)^{2}}{M-1}} (10); \qquad \qquad \sigma_{i} = \sqrt{\sum_{k=1}^{M} \frac{\left(C_{i,k}^{u_{3M}} - \langle C \rangle_{i}^{u_{3M}}\right)^{2}}{M-1}} (11);$$

$$\sigma_{i},\% = \frac{\tilde{\sigma}_{i}}{\langle \tilde{C} \rangle_{i}^{u_{3M}}} \cdot 100\% \quad (12); \qquad \qquad \sigma_{i},\% = \frac{\sigma_{i}}{\langle C \rangle_{i}^{u_{3M}}} \cdot 100\% \quad (13);$$

$$\delta_{i},\% = \frac{\left(\langle \tilde{C} \rangle_{i}^{u_{3M}} - \tilde{C}_{i}^{ammecm}\right)}{\tilde{C}_{i}^{ammecm}} \cdot 100\% \quad (14); \quad \delta_{i},\% = \frac{\left(\langle C \rangle_{i}^{u_{3M}} - C_{i}^{ammecm}\right)}{C_{i}^{ammecm}} \cdot 100\% \quad (15);$$

где:

 $ilde{C}_{i}^{ammecm}$ — аттестованное значение концентрации i-го компонента в контрольном образце, в мг/л; C_{i}^{ammecm} — аттестованное значение концентрации i-го компонента в образце, выраженное в мг/л AA.

2.3.8. Следует отметить, что значения концентраций летучих компонентов в паспортах СО приводятся в мг/дм³ (мг/л) и такая же размерность используется на начальных этапах выполнения работы по ГОСТ 30536. Конечные результаты измерений концентрации необходимо выражать в мг/л в расчете на безводный этанол (мг/л АА), для чего выполняется пересчет значений концентрации по формуле:

$$\langle C \rangle_i^{\text{usm}} = \langle \tilde{C} \rangle_i^{\text{usm}} / \left(\kappa penocmb / 100\% \right)$$
 (16)

Характеристики, полученные в результате анализа контрольного образца при работе по ГОСТ 30536

«N	«Метод РВ ГОСТ мг_л»								
i	Компонент	OHEHT $ ilde{C}_i^{ammecm}$, $ ilde{\langle ilde{C} \rangle}_i^{u_{3M}}$, $ ilde{C}_i^{ammecm}$,		$\langle C \rangle_i^{\scriptscriptstyle \mathcal{U}^{\mathfrak{JM}}}$,	$\sigma_{_i}$, %	δ_i ,%			
		мг/л	мг/л	мг/л АА	мг/л АА	ı			
1	ацетальдегид	8.70	8.65	21.75	21.62	3.9	-0.6		
2	метилацетат	9.20	9.28	23.00	23.19	3.2	0.8		
3	этилацетат	9.00	9.14	22.50	22.86	2.2	1.6		
4	метанол	83.14	84.30	207.85	210.75	4.4	1.4		
5	2-пропанол	8.50	8.60	21.25	21.50	4.5	1.2		
6	1-пропанол	8.00	8.08	20.00	20.20	3.6	1.0		
7	изобутанол	8.00	8.08	20.00	20.19	4.2	1.0		
8	1-бутанол	8.10	8.16	20.25	20.41	4.3	0.8		
9	изоамилол	8.10	8.13	20.25	20.32	4.1	0.3		

Характеристики, полученные в результате анализа контрольного образца при работе по ММВС

«Э	«Этанол внутр_станд _PB1»								
i	Компонент	$C_i^{\it ammecm}$, мг/л AA	$\langle C angle_i^{\scriptscriptstyle {\it u}_{\it 3M}}$, мг/л ${ m AA}$	$\sigma_{_i}$, %	$\delta_{_i}$,%				
1	ацетальдегид	21.75	21.75	0.3	0.000002				
2	метилацетат	23.00	23.00	0.9	0.000002				
3	этилацетат	22.50	22.50	2.0	0.000000				
4	метанол	207.85	207.85	0.4	0.001203				
5	2-пропанол	21.25	21.25	0.4	0.000000				
6	1-пропанол	20.00	20.00	1.2	0.000000				
7	изобутанол	20.00	20.00	0.3	0.000000				
8	1-бутанол	20.25	20.25	0.1	-0.000005				
9	изоамилол	20.25	20.25	0.3	-0.000005				

3. Анализ образцов спиртосодержащей продукции

- 3.1. Применение «Метод РВ ГОСТ мг_л» и «Этанол внутр_станд _РВ1» для анализа образцов спиртосодержащей продукции
 - 3.1.1. Регистрируют хроматограммы образцов спиртосодержащей продукции.
 - 3.1.2. В главном меню программы ChemStation B.04.03 нажимают «Method» и далее «Load Method...». В раскрывшемся списке выбирают «Метод РВ ГОСТ мг_л» в случае работы по ГОСТ 30536 или «Этанол внутр_станд _PB1» в случае работы по ММВС и использования этанола в качестве внутреннего стандарта.
 - 3.1.3. В главном меню нажимают «File» и «Load Signal...» в списке для собственных данных ChemStation. Однако если файлы измеренных хроматограмм имеют формат *.cdf, то нажимают «Import File» и «AIA File...». Открывают файл первой хроматограммы образца спиртосодержащей продукции.
 - 3.1.4. Размечают и интегрируют пики летучих соединений в хроматограмме (ацетальдегида, метилацетата, этилацетата, метанола, 2-пропанола, этанола, 1-пропанола, изобутанола, 1-бутанола, изоамилола).
 - 3.1.5. Расчет значений концентрации летучих соединений в анализируемом образце производится при создании отчета. Нажимают "Report" и "Print Report" и сохраняют созданный файл отчёта по данному измерению образца спиртосодержащей продукции.
 - 3.1.6. Затем повторяют указанные действия для других повторных измерений образца спиртосодержащей продукции в обоих методах «Метод РВ ГОСТ мг_л» и «Этанол внутр станд РВ1».
 - 3.1.7. Таблица отчёта содержит результаты со значениями измеренной концентрации для каждого компонента в образце спиртосодержащей продукции «Amount»: $\tilde{C}_{i,k}^{u_{3M}}$ в мг/л при работе по ГОСТ 30536 («Метод РВ ГОСТ мг_л») или $C_{i,k}^{u_{3M}}$ в мг/л АА при работе по ММВС («Этанол внутр_станд _PB1»), а также значения градуировочных параметров $R\tilde{F}_i$ («Amt/Area») и RRF_i^{smanon} («Amt/Area ratio»), использованных в этих методах.
 - 3.1.8. На основе хроматограмм, измеренных в условиях повторяемости, рассчитывают средние значения измеренной концентрации в контрольном образце $\langle \tilde{C} \rangle_i^{u_{2M}}$ в мг/л при работе по ГОСТ 30536 («Метод РВ ГОСТ мг_л») или $\langle C \rangle_i^{u_{2M}}$ в мг/л АА при работе по ММВС («Этанол внутр_станд _РВ1»). Формулы, согласно которым вычисляются значения концентрации в образце спиртосодержащей продукции по результатам измерения хроматограмм, следующие:

$$\tilde{C}_{i,k}^{u_{3M}} = R\tilde{F}_{i} \cdot A_{i,k} \quad (17); \qquad \left\langle \tilde{C} \right\rangle_{i}^{u_{3M}} = \left(\sum_{k=1}^{M} \tilde{C}_{i,k}^{u_{3M}} \right) / M \quad (18);$$

$$C_{i,k}^{u_{3M}} = RRF_{i}^{\partial mahon} \cdot \rho_{\partial mahon} \cdot \left(A_{i,k} / A_{\partial mahon,k} \right) \quad (19); \qquad \left\langle C \right\rangle_{i}^{u_{3M}} = \left(\sum_{k=1}^{M} C_{i,k}^{u_{3M}} \right) / M \quad (20);$$

где:

- $A_{i,k}$ величина отклика детектора на i-й компонент, полученная в результате k-го измерения образца спиртосодержащей продукции;
- $A_{_{3manon,k}}$ величина отклика детектора на этанол при k-ом измерении образца спиртосодержащей продукции;
- М число измерений образца спиртосодержащей продукции;
- $\rho_{\text{этанол}}$ значение концентрации этанола в СО, выраженное в мг/л AA, равно табличному значению плотности безводного этанола (789270 мг/л при температуре 20 °C).
- 3.1.9. На основе данных, полученных в условиях повторяемости, для образца спиртосодержащей продукции рассчитывают СКО ($\tilde{\sigma}_i$ в мг/л или σ_i в мг/л АА) и ОСКО в % (σ_i , %) для оценки неопределенности метода по формулам (10)-(13).
- 3.1.10. Конечные результаты измерений концентрации по ГОСТ 30536 необходимо выражать в мг/л в расчете на безводный этанол (мг/л AA), для чего выполняется пересчет значений концентрации по формуле (16).

Результаты анализа образцов спиртосодержащей продукции при работе по ГОСТ 30536

«M	«Метод РВ ГОСТ мг_л»								
	Компонент	Вис	ски	Бренди					
i		$\langle C angle_i^{\scriptscriptstyle {\it U}^{\it 3M}}$, мг/л ${ m AA}$	$\sigma_{_i}$, %	$\langle C angle_i^{\scriptscriptstyle {\it u}_{\it 3M}}$, мг/л ${ m AA}$	$\sigma_{_i}$, %				
1	ацетальдегид	240.2	13.6	393.5	6.9				
2	метилацетат	22.2	6.5	99.7	6.5				
3	этилацетат	239.7	3.5	629.6	6.6				
4	метанол	49.0	14.6	445.5	8.4				
5	2-пропанол	2.6	9.8	4.8	2.8				
6	1-пропанол	521.2	13.2	452.7	6.7				
7	изобутанол	772.6	10.8	1774.2	5.4				
8	1-бутанол	6.8	13.0	6.1	11.8				
9	изоамилол	920.8	12.8	4600.6	5.6				

Результаты анализа образцов спиртосодержащей продукции при работе по ММВС

«Этанол внутр_станд _PB1»								
i	Компонент	Вис	ски	Бренди				
		$\langle C angle_i^{\scriptscriptstyle {\it u}_{\it 3M}}$, мг/л AA	$\sigma_{_i}$, %	$\langle C angle_i^{\it{u}_{3M}}$, мг/л AA	$\sigma_{_i}$, %			
1	ацетальдегид	249.2	0.2	414.6	0.7			
2	метилацетат	22.8	6.7	103.6	3.1			
3	этилацетат	245.0	9.5	648.4	4.0			
4	метанол	49.8	1.1	459.5	1.0			
5	2-пропанол	2.7	8.8	5.0	4.8			
6	1-пропанол	533.1	0.3	470.1	0.7			
7	изобутанол	792.5	2.6	1845.2	2.1			
8	1-бутанол	7.0	2.5	6.4	4.5			
9	изоамилол	947.1	0.7	4806.0	1.8			

Паспорта наборов ГСО 8405 (№51) и 8404 (№44)

Аттестованная характеристика	Аттестованное значение CO, мг/дм ³			№ пика на хромато-		Аттестованное значение концентрации, мг/л AA		
стандартного образца (СО)	PC-1	PC-2	PC-3	грамме	компонента	PC-1	PC-2	PC-3
Массовая концентрация уксусного альдегида (ацетальдегида)	9.30	4.70	1.06	1	ацетальдегид	9.69	4.90	1.10
Массовая концентрация метилового эфира уксусной кислоты (метилацетата)	9.20	4.60	0.92	2	метилацетат	9.58	4.79	0.96
Массовая концентрация этилового эфира уксусной кислоты (этилацетата)	9.00	4.50	0.90	3	этилацетат	9.38	4.69	0.94
Массовая концентрация метилового спирта (метанола)	81.56	41.97	10.29	4	метанол	84.95	43.71	10.72
Массовая концентрация изопропилового спирта (2-пропанола)	9.00	5.10	2.00	5	2-пропанол	9.38	5.31	2.08
Массовая концентрация пропилового спирта (1-пропанола)	8.00	4.00	0.80	6	этанол	789270	789270	789270
Массовая концентрация изобутилового спирта (2-метил-1-пропанола)	8.00	4.00	0.80	7	1-пропанол	8.33	4.17	0.83
Массовая концентрация бутилового спирта (1-бутанола)	8.10	4.00	0.81	8	изобутанол	8.33	4.17	0.83
Массовая концентрация изоамилового спирта (3-метил-1-бутанола)	8.10	4.00	0.81	9	1-бутанол	8.44	4.17	0.84
Объёмная доля метилового спирта (метанола), %	0.0103	0.0053	0.0013	10	изоамилол	8.44	4.17	0.84

Аттестованная характеристика	Аттестованное значение CO, мг/дм ³			№ пика на хромато-	Название летучего	Аттестованное значение концентрации, мг/л AA		
стандартного образца (СО)	PB-1	PB-2	PB-3	грамме	компонента	PB-1	PB-2	PB-3
Массовая концентрация уксусного альдегида (ацетальдегида)	8.7	4.4	1.02	1	ацетальдегид	21.7500	11.0000	2.5500
Массовая концентрация метилового эфира уксусной кислоты (метилацетата)	9.2	4.6	0.92	2	метилацетат	23.0000	11.5000	2.3000
Массовая концентрация этилового эфира уксусной кислоты (этилацетата)	9	4.5	0.9	3	этилацетат	22.5000	11.2500	2.2500
Массовая концентрация метилового спирта (метанола)	83.14	43.55	11.09	4	метанол	207.8475	108.8725	27.7130
Массовая концентрация изопропилового спирта (2-пропанола)	8.5	4.5	1.36	5	2-пропанол	21.2500	11.2500	3.4000
Массовая концентрация пропилового спирта (1-пропанола)	8	4	0.8	6	этанол	789270	789270	789270
Массовая конценграция изобутилового спирта (2-метил-1-пропанола)	8	4	0.8	7	1-пропанол	20.0000	10.0000	2.0000
Массовая концентрация бутилового спирта (1-бутанола)	8.1	4	0.81	8	изобутанол	20.0000	10.0000	2.0000
Массовая концентрация изоамилового спирта (3-метил-1-бутанола)	8.1	4	0.81	9	1-бутанол	20.2500	10.0000	2.0250
Объёмная доля метилового спирта (метанола), %	0.0105	0.0055	0.0014	10	изоамилол	20.2500	10.0000	2.0250